3% Bauhinia Newsletter

-y

-

R .
A |
-t T e

M — -

——N —
. = =
[-Cofitents
QJ‘J
31N DI}
cmm— €8T ANAIYSISS
Kubernetes’Ne working

h Flipper Zero

Generati\i‘b Model

~Web,Debugging Proxy:

~ LLL Primer
DLIL Sideloading

Table of Contents

Table of Contents

Foreword

Knowledge Sharing
The journey of my first cybersecurity certificate — 7immy
Reflections on “Reflections on Trusting Trust” — Stdor
The Power of QR code recovery — a1668k
Bauhinia CTF 2023 Image Factory — cire meat pop
TetCTF 2024 LordGPT: Microsoft Azure nOAuth Bug — vow
Binary Similarity: Overview of BinDiff — wwkenwong
How LLL works (simply) — Eason

Traffic Routing in Kubernetes — ensy

Flipper Zero #5if#i /2 NFC — GonTK
Threats Analysis for Running Out of Paper in Public Toilets — apple
Introduction to Generative Model — streamline
Interacting Breakpoints with OWASP ZAP API — vikychoi
APT techniques studying: DLL sideloading — hotton
PuTTY’s P521 vulnerability, and a LLL primer — Mystiz
Events
ANERICLLE 26— grim
Onsite Hardware Problem in SECCON 2023 Final - harrier
SECCON Trip in Japan - hoifanrd
Ad-Hoc
Isekai Tensei Hakka Vol 1 Issue 1 - Ozetta

Isekai Tensei Hakka Vol 1 Issue 2 — Ozetta

Credits and Afterwords

10

12
14
16
18
20

22

24

20

27

28
30

32

Foreword

Welcome to the first public edition of our newsletter, presented by Black Bauhinia
(blackb6a) team members. Black Bauhinia is a Capture-the-Flag team from Hong Kong
founded in 2019 and have been actively participating in CTF games since then. Whether
you're an industry expert or a student, we hope this newsletter will inspire you about
different aspects of CTF and the cybersecurity landscape.

What is CTF?

Capture The Flag (CTF) is a popular type of cybersecurity competition that challenges
participants to solve various puzzles and problems to capture hidden "flags". Often, players
are required to break a system and workaround the security measure to get the flags.

CTFs are designed to simulate real-world cybersecurity scenarios, providing a platform for
learning and demonstrating skills in a fun, competitive and legally safe environment.

About Black Bauhinia

Black Bauhinia is a CTF team from Hong Kong dedicated to advancing cybersecurity
knowledge and skills. Our mission is to foster a community of learners and professionals
who are passionate about cybersecurity and eager to tackle new challenges.

m Black Bauhinia

Also known as

+ BlackBauhinia captured on 16
" Pkt June, 2024

Website: hitps://bfa black
Twitter: blackb6a

Sign in to join the team.

Ateam based in Hong Kong
(We are NOT affiliated with any associations.)

Participated in CTF events

2024 2023 2022 2021 2020 2019

Overall rating place: 24 with 327.686 pts in 2024
Country place: 1

Looking forward, we are committed to continuing our efforts in organizing, participating
CTFs and contributing to the cybersecurity community. We encourage newcomers to dive
into the world of CTFs and experience the immense benefits they offer. We extend our
heartfelt gratitude to our team members, participants, and supporters who make this
newsletter. Join us in our journey, and let's capture the flag together!

The journey of my first cybersecurity certificate ‘(\

Jimmy

The journey of my first security certificate - Jimmy

Burp Suite Certified Practitioner (BSCP) is one of the cheapest cybersecurity certificates you
would find on the market. It costs USD100 per attempt, and if you fail, you could retake the
exam as many times as you want, if you can afford it. However, you will need Burp Suite Pro to
take the exam, which costs an additional USD450 per year (but you could save the cost by
using the 30-day trial version). The exam format is fun. You got 4 hours to hack 2 websites. You
need to complete 3 stages one-by-one. First, compromise a user account. Next, utilize the user
account to escalate privilege and log in as the admin. Finally, you use the admin account to read
the secret located in /home/carlos/secret.

The scope of the exam is quite broad in my opinion. Port Swigger includes 30 categories of
labs, which adds up to 264 labs in total. There are 3 difficulties: apprentice, practitioner, and
expert. Most of the labs are well-guided, you could mostly finish them if you read the
paragraphs. You are advised to do all labs of the apprentice and practitioner level. Did | follow
the instructions? No, because | am a naughty hacker! That's why | failed my first attempt. But |
did pass the second one easily after learning the lesson. Interestingly, the passing rate of the
exam seems quite low. If you search for reviews, people usually take 3-4 attempts.

The most time-consuming part of the exam is perhaps “figuring out what's wrong”. Therefore,
Burp Suite got a perfect chance to promote its own Scanner and Collaborator architecture. And |
am definitely impressed by it. Although it is imperfect, it makes me witness how powerful it can
be in locating vulnerability. And | wonder if | could develop my own tools in doing similar things.

While the overall experience is quite fun, and | learned a lot, BSCP is perhaps one of the least
known security certificates. The more famous OSCP/CISSP are still dominating the market.
Therefore, | wouldn’t recommend you to spend months completing all the labs, just to pass the
exam. However, it would be a fruitful journey if you take advantage of the educational labs.

Burp Suite
Certified

Burp Suite Certified Practitioner

This certification, created by PortSwigger's Web
Security Academy, demonstrates that | have the
ability to:

Carlificate:

Burp Suite Cerlified Praclilicner o Debect and prose the full usiness impact of & wide range of

common wab vulnarabifies

Name:
J-h” Al = Adapt attack methods 1o bypass broken defences, using
3 A knowladpe of lundamental wab 1echnologies
Issue date:

= Cmckly identify weak ponts within an altack surface, and

28 March 2024 perfonm out-of-band atlacks o altick them

Valid until:
PortSwigger are the creators of the Web Security Acadermy and Burp
& March 2029 Syite, the worlkds leading foolkit for wes securily testing
Token:
. £ PortSwigger m%ﬁm Burp Suite
Yy @ o o

KNOWLEDGE SHARING

20)

"

Reflections on “Reflections on Trusting Trust”

Reflections on “Reflections on

Trusting Trust”
Stdor

Abstract We present a “trojan horse” (in python)
based on the paper “Reflections on Trusting Trust”.

Ken Thompson, the lead designer and programmer of
UNIX, really needs no introduction. Despite his
contributions to the UNIX system and the C Programming
Language, he decided to talk about security in his Turing
Lecture “Reflections on Trusting Trust” when he won the
Turing Award in 1983. It's now a required read in most
undergraduate cybersecurity courses. The talk is
significant in a sense that it introduces a fundamental
concept in security - supply chain attack and the root of
trust. | recommend reading the 3-page lecture first
before trying this lab (code available here).

First we present a simple python “compiler” and
“runtime”; implemented using marshal (a serializer)
and compile. This is far from “real” compilation, but we
make the same assumptions - the binary is relatively
hard to audit, and the source code relatively easier.

Case | (Figure 3.1 in the original paper)

Here’s the situation described in Figure 3.1 in the original
paper - using a benign system compiler to compile
source code. You have to compile the compiler yourself
in the first command (which | indicated "please ignore");
because you would not run it if | supplied a
compiler.bin directly to you (and you shouldn't). But
let's assume that compiler.bin is provided to you by
someone else (e.g., installed as system default), and is in
fact benign. In this case, you get a benign compiler, you
get to compile your program hello.py, everyone is happy.

Case Il (Figure 3.2 in the original paper)

Now Ken suggests that the binary compiler could be
backdoored. In our case, we’ll “backdoor” python
programs with a single line of print statement by adding a
print("pwned") statement before compilation. It can
be easily done, in compiler-evil.py. We assume that we
have access to compiler.bin only, but not its source
code.

hello.py Backdoored compiler Backdoored hello.bin

Fig 1. “Backdoored compiler” pollutes hello.bin. Green items are
trusted items; red ones are malicious

This case is easy to detect. Suppose you ask for the
source code of compiler.bin. If it turns out to be
compiler-evil.py, you can spot the backdoor code.

KNOWLEDGE SHARING

Case Il (Figure 3.3 in the original paper)

To make the backdoor harder to detect, we backdoor
the compiler binary used to compile a compiler. Let’s
imagine the following. As an educated cybersecurity
analyst, you don't trust the default compiler so you
compile your own compiler. You have already audited the
compiler source to have no backdoors (“Trusted
Compiler Source”). But the compiler you used
(“Backdoored compiler”) will compile itself (which is
backdoored) instead when it knows it’'s compiling a
compiler. At the end, you get a “Backdoored Compiler
Binary” from “Trusted Compiler Source”.

The big picture looks like this. The right one is what you
imagined, and the left one is the actual situation, namely,
the “Trusted Compiler” is actually a “Backdoored
compiler”. The backdoor propagates.

Trusted
Compiler Source

Trusted
Compiler Source

Trusted
Compiler

Backdoored

hello.py hello.py

Compiler

Backdoored
Compiler binary

Trusted
Compiler binary

Backdoored hello.bin hello.bin

Fig 2. “Backdoored compiler” pollutes the compiler, then hello.bin

Despite having audited the compiler source code and
compiling from there, your final binary is still
backdoored. You wrongly trusted the compiler that
you used to compile your trusted compiler source.

The moral is obvious. Security is relative. Behind every
security claim, there’s an ultimate root of trust. Here are
some more lessons learnt:

° Source code-level audit gives you a false sense
of security if you use an untrusted compiler to
compile that source.

° When you claim a software is secure, what
exactly are you saying? How can you be sure
the whole “Silicon > Circuit » CPU > BIOS > 0S
> Compiler > Software” chain is not being
tampered with?

° Spy chips can and indeed exist. But let’s try not
to be conspiracy theorists.

References. Original Paper, Slides, Video on the paper,

Follow-up to the paper, Quine Guid

The Power of OR code recovery

The Power of QR code recovery

By = m 21008k

In Firebird CTF 2024, just_lay and | have created a QR code recovery
challenge %5 What really inspires us to create this challenge is because of

thisO Github write-up. At first glance, the given QR code has too many

covered pixels, which seems to be impossible to repair. But with the
Reed-Solomon Decoder in QrazyBox, you can recover the flag by just
plotting all the uncovered pixels, together with the fixed patterns (including the Finder, Timing, and

Alignment patterns) l\gvk [P.S. Really don't know why it only got 2 solves??? | think this is an easy challenge...]

But why can we recover that many missing pixels? Isn't that QR codes only offer up to 30% recovery capacity
with correction levels H? But our given QR code has more than 60% missing pixels... To understand why the
recovery mechanism still works in our case, time to introduce the error-correcting codes used in QR codes -

Reed-Solomon error correction.

QR codes use Reed-Solomon code for error correction, which the message will be encoded to
Reed-Solomon blocks. With the normal error correction method, the highest error correction capability of a
QR code is around 30% with an H level, which means it can recover at most 30% damaged bytes in each

Reed-Solomon block.

However, there is a type of correction in Reed-Solomon code - Erasure correction, which can double its
error correction capability if it is an erasure code - that is, if we know where the errors are, we can
recover up to 60% of the corrupted pixels! In addition to this, in larger QR symbols, the message is broken
up into several Reed-Solomon code blocks and interleaved together, making the localized damage less likely

to overwhelm the capacity of any single block.

In our case, as we know where all the missing pixels are, with the designed placement of the bobcats which
makes sure that there are not too many missing erasures for each Reed-Solomon code block, we just have
enough pixels to cover the whole QR code and get the flag! E»Q

| have deliberately avoided discussing the theory and implementation of Reed-Solomon codes in detail and
skipped lots of details about QR code formatting here. For more details, here are some links for you to do
further studies: (maybe it can create a good crypto challenge? Idk xDD)

https://en.wikipedia.org/wiki/QR

https://en.wikipedia.org/wiki/Reed-Solomon_error_correction
https://merri.cx/grazybox/help/extension-tools/reed-solomon-decoder.html

Happy Hacking! (£

KNOWLEDGE SHARING

14

‘\‘_ﬁ}?’/

Bauhinia CTF 2023 Image Factory
cire meat pop

EEF I M4 Bauhinia CTF HAE—RE pwn & Image Factory > which FBE AR A ZR B2 HIBWERE pwn E&
EM——&FB1E L A8 ETE#E B pwn 78 > FRLUBMAIRE S E— T IEETtERE F M intended solution ©

TLDR > IgRE host {¥—1@ nc service » EiBEZBIFRI L input £X format BEEISAR{E program FLE output
E—{ER$5ZEMBE vector image format (e.g. svg) MEEILLSR o Attachment AEH BBFR/A Dockerfile LML
2% main.c ° AL main RIEZIBFEEMIbug » BE&F Dockerfile AEB4FE git clone —1{@& external library —
AutoTrace &% build » IEE A F—F IEZE RIEIHZEE/ER2E convert image M library ©

S RIEIE pwn M8 intended solution %3 B & A ZE AutoTrace I info leak 0-day /1 libc arbitrary write 0-day °

info leak 0-day

TGAE F & TFEE I EHE R LUE A Indexed Color
Mode * &ElpixellEE1Z#FRGBE » BMARE—
{&index ° TGAtheader& & —1Elcolor map data °
pixelBEIRGB{E&referZcolor map datafindex] ©

input-tga.c:520

) {
temp2,

rMapType

temp,

[index;
XpoS, YypoSs;

temp3;

temp2 = temp
image.bitmap

unsigned c

image.bitmap;
temp3
har *)malloc(width height
height; ypos
width; xpos

ypos
Xpos
index
temp3
temp3
temp3

i Ypos
; Xpos
temp2
cmap [
cmap [
cmap [

index |-
index |-
index -

free(temp);
free(cmap);

—{EpixellERGB{EGreferE|cmap[3xindex | o
HtindexE#Zlchecking * RGBER AT LreferZ
cmap[3#0xffIR{E(IL » EcmapmBiA/N&Himage
headeriZ®l » Frllusers] LA —5Rcmap% 16bytes
chunk B EEpixelBiEEE ZreferBcmap [767 |1
> e {E4FAREE % —{Blaccess out-of-bound
vulnerability ©

libc arbitrary write 0-day
input-bmp.c:606

(bpp 16) {
XMALLOC (image, width
masks .mask

channels
(Grey) {

height
channels

XMALLOC (image, width
channels

{
XMALLOC (image, width
channels

height

height

imageZ AR (EREpixellfchunk » K/NRAS
widthxheight«3 » E&—{EpixelJABERGBIE3(E
IEEFdata o B &4R#Hcode logic > channels

A assignfifi4 > 5 Z—1{Bpixel R AT AT RGBAAE
MEEMdata > widthxheight+3RIEMEREMEE o

input-bmp.c:631

rowstride = width channels;

ypos

height
(bpp)

ReadOK (fd, row buf, rowbytes)
image (ypos rowstride) ;
(xpos ; Xpos width; xpos) {
(temp row_buf[xpos .

(temp row_buf[xpos
(temp row buf[xpos

temp

(ypos
ypos;

parser&fitsource imageEcopyMipixelZ imagelg(E
chunk® > MitempMIsERE Fcopy AXBHIE - B
#temp=image+(yposxrowstride) »
ypos*rowstride R/ FKimageBiA /)
widthxheightx3 o

ypos[ErowstrideB#aED AZRwidth *
channelsf@height-1 o Fillypos*rowstridel
B ERwidthxchannels*(height-1) o fhsElE
SR LEERBCchanne lsRARIU RS ° F&4w(h-1)
> 3wh > FIXEHIREBAFRBHER o HMA—E
write out-of-boundMfvulnerability T ©

Emalloc—{ElsizeH & £7#t KMEchunk BB » iH
malloct ZRI8% i ma g e T E B chunkFt 4 E Zdynamic
libraries o F|FEIEEY » pwnerfAAJ LA E]libe arbitrary
write ©

{RETLAME http://bit.ly/487SHzN 1B EIIRE B Detail Version [& Full Solve Script » NiBAM RS T > solve
script #2E 8 5t A info leak 0-day 2 leak address > A& 8 offset 5+&)E libc base address 3 » &
libc arbitrary write 0-day Z overwrite libc BIAZE (TEEFKEEEE A house of apple BE57%) % shell o

KNOWLEDGE SHARING

TetCTF 2024
LordGPT: Microsoft
Azure nOAuth Bug

- VOw

1 - Introduction

TetCTF 2024 had an interesting web (misc)
challenge related to Microsoft's Azure AD. Here is a
simple walkthrough of the challenge, how one can
prevent this type of vulnerability, and my thoughts
on this challenge.

2 - Walkthrough'

We are given a webpage that allows us to sign in
with a Microsoft account to access an Al chatbot;
however, when we do so, we receive an error
message saying that we do not have access
permission. The trick here is to edit the tenant ID of
the OAuth URL link? to {common}, which allows
anyone with a Microsoft account to sign in.

Once we are in, we can do some prompting with the
bot, and we can look at our profile. We learn that
each profile and chat ID is uniquely generated using
Snowflake ID3, and there exists an admin profile.

Snowflakes are 64 bits in binary and have three main
parts: the time, a machine ID and a machine
sequence number. The time is given by the chatbot,
so we can figure out the set of machine IDs and
sequences by generating and checking multiple
snowflakes. After that, we can easily figure out the
ID of the admin profile.

unused datacenter_id

sequence_id

worker_id

| |<- 41 bits ->|

Snowflake ID structure

Looking at the admin profile, we can see that it
contains an email address, but if we use this email to
sign in, we find that this email does not exist. The
last part of this challenge is to create a tenant user,
modify its email to the admin’s email, sign in with the
user’'s email®, and just like that, we have taken over
the admin’s account and we can get the flag.

1 My full writeup

2 Microsoft identity platform and OAuth 2.0
authorization code flow - Microsoft

3 Snowflake ID - Wikipedia

4 nOAuth: How Microsoft OAuth Misconfiguration
Can Lead to Full Account Takeover - descope

Overview Monitoring

Properties

Identity Contact Information

Display name bad Street address

First name bad City

Last name bad State or province

User principal name badbadperson@gmail.com ZIP or postal code

Object ID 1234-abcd-1234-abcd Country or region

Identities Business phone

User type Member Mobile phone

Creation type Email victim@gmail.com

nOAuth vulnerability, change user’s email to admin’s email
3 - Preventive measures

There are three bugs to this challenge, and there is
something that can be done for each of them.

For the OAuth URL, this flaw would not happen if
the application were configured to only allow users
with permission to access it. For the Snowflake ID,
one can simply implement server-side checking for
cookies (which has not been imposed for profiles),
and as for the nOAuth vulnerability, applications
should not use email claims for authentication.

Register an application

Supported account types

Who can use this application or access this API?
Accounts in this organizational directory only (Default Directory only - Single tenant)
O Accounts in any organizational directory (Any Microsoft Entra ID tenant - Multitenant)

O Accounts in any organizational directory (Any Microsoft Entra ID tenant - Multitenant)
and personal Microsoft accounts (e.g. Skype, Xbox)

(D Personal Microsoft accounts only

Configuration that prevents unauthorized accounts from signing in

4 - Thoughts

The wvulnerabilities in this challenge are very
interesting, but finding them out is insanely tuning.
No source code was provided, and we literally had to
guess the vulnerabilities (it took us 10 hours just to
get onto the website, and we probably would not be
able to solve the challenge if the author did not give
out hints for each part).

5 - Conclusion

Misleading description, fake web/Al challenge,
hohosiu Azure tuning challenge, however:

ozetta
good challenge because it gives us 1000 points

&

=

Points > Challenge Quality (x

Special thanks to Ozetta and YMD for helping me
solve/tune this challenge.

KNOWLEDGE SHARING

Binary Similarity: Overview of BinDiff

wwkenwong

Binary Similarity: Overview of BinDiff
Author: Ken Wong

While binary comparison tools like BinDiff rarely come up in CTF, the topic of binary similarity (BCSA) is an
important area of ongoing research in modern software security. Apart from vulnerability analysis, binary similarity
techniques have various uses like identifying open source license violations in commercial software, malware
analysis, etc.

Compared with source diffing, applying line-by-line diffing on assembly instructions can fail to detect functionally
equivalent programs optimized differently or compiled with varying tools. For example, the same source code
compiled at different optimization levels or with different compilers may exhibit major syntactic differences while
behaving identically. Line-by-line matching cannot account for such variations. More advanced approaches
leverage semantics, like symbolic execution, to check equivalence at the code behavior level while requiring
heavyweight computation. BinDiff is the current industry-standard solution for comparing similarity between
binaries and was engineered by Halvar Flake in 2003. It has served as the most practical solution in the industry
since then. In this newsletter, | will first give a high-level overview on the design of the BinDiff.

While BinDiff was engineered in 2003, it remains the most practical solution in the industry. It first consumes
disassembly code generated by reverse engineering platforms (like IDA Pro, Ghidra, and Binary Ninja), then
compares functions in two binaries and derives a match between them based on scores. The core idea is to use
three levels of statistical features to represent a function, namely the number of basic blocks, the number of edge
blocks, and the function call graph. Based on the first two representations, BinDiff initially obtains a match on two
sets of functions. Then, it iteratively refines the matching result with different features and strategies derived from
the control flow graph (CFG) and the function call graph. A score is obtained from each of the strategies, and the
final matching result is obtained based on a combination of the scores with the confidence of each of the
strategies. Afterwards, the final match result is presented as two lists: a list of functions successfully associated
with each other and a list of functions that could not be associated.

As a Computer Science student, you might already notice that deriving matching between two sets of CFGs is
equivalent to solving the graph edit distance between the two sets, and is an NP-hard problem. Meanwhile, the
design of BinDiff allows it to derive a matching result in a reasonable time. The major reason lies in the technical
design and feature selection of the signature matching algorithm. The design of BinDiff uses a significant number
of features present in the binary function to derive the similarity score. For example, it uses the function name (if
symbols are available), the hash of the function's raw bytes, and the MD index (a graph hash function designed
by Halvar Flake in here to support fast lookup during matching. It is based on the topological information of the
input graph) of the function CFGs and call graphs.

Another technical hurdle faced in matching assembly instructions is register allocation. Register allocation is an
important step performed by compilers during code generation. It involves mapping high-level variables and
values to machine registers that will be used during program execution. This step may not generate consistent
results across different versions of the compiler. The implication is that, if we use instruction as a unit of
comparison, it leads to false negatives during matching. To address this and improve the performance in
comparison with the CFGs, BinDiff uses the prime product of instruction mnemonics to represent an assembly
instruction. These primes will then be multiplied to form a unigue signature for the function.

push rbp [2.3,....5]

Sl AN

[11.13, ...17711.19_. 5]
Instruction sequence CFG CFG with Prime
Fig 1 Overview in BinDiff preprocessing a binary function

To wrap up, the use of various graph heuristics is the key to the success of BinDiff in solving the binary function
matching problem and remains the industry standard up till now. To further understand the design, the primary
source would be the recent open-source repository of BinDiff, the two papers and blog post written by Thomas
Dullien, as well as the publication from Zynamics. And since the BinDiff result is stored in SQLite format,

examining the BinDiff result directly will provide insight into how matches were generated.

KNOWLEDGE SHARING

How LLL works (simply)

Eason

You might know many solution of crypto challenges are using lattice based attack such
as LLL algorithm for RSA, ECDSA, etc. But do you know how it works?

Idea of lattice

We know that in linear algebra, a set B of vectors is called a basis if the vectors are linearly
independent. Then a lattice is formed, which is the set of all integer linear combination of
vectors in the basis B: £ = L(B) = {)_, a;0; : a; € Z}.

Moreover, there are 2 lattice based problems: shortest vector problem and closest vector
problem, LLL algorithm can find the approximate solution of those problem. Therefore, in
some situation, e.g. when the RSA private exponent d is too small, we are able to recover
the secret key or message as long as we can construct a right basis and the solution contains
those secret information.

But how can we convert a cryptographic setting into a lattice based problem or more specif-
ically, transform a RSA equation into a basis?

Transformation

Assume we get this RSA equation: agz? + ajz + ag = r (mod n), also values of a;, 7, and n
are given. we can build up a system of linear equation like Az = b and this:

1 0] [x2 22
1 0 x x
1 0 k| =1 k | €L, which L is over Z,
2xlen 0 1 2xlen
as a; —m apg—1r O 0 0

27len means value of x is at most xlen-bit length, which is for limit the approxmiate value
of x within 2%!¢" after apply LLL algorithm.
The key part is the last row, after applying matrix multiplication, the Ax will be:
2
x

x
k
leen
asx® + a1z +ag —r — kn
the equation of the last row is equal to asz? + a1z + ag = 7 (mod n), which k is a constant.
After apply the LLL-algorithm on the basis matrix A, it becomes a LLL-reduced basis and
a shortest vector in the lattice can be found in the first vector of the reduced basis.
You might also be confused why LLL-reduced basis can contain the solution like this. Simply
put, the Gram-Schmidt orthogonalisation process used to compute the given basis into an
orthogonal basis and then Lovész condition is used in LLL algorithm to help length reduction
and ensure that the second vector should be not much shorter than the first.
And According to Minkowski’s First Theorem, LLL algorithm is able to solve x when:
x < V/d|det(£)|"/?, which d is the degree of the polynomial (highest power of x)
This is a very rough explanation for LLL algorithm. In fact, most of the time we might meet
more complex cryptographic setting, such as the equation can be multivariate polynomial.
To solve those problems, we have to understand more maths and cryptography.
Finally, I want to give a special thanks to Cousin and hoifanrd for teaching me more about
number theory and lattice-based cryptography.

KNOWLEDGE SHARING

Traffic Routing in Kubernetes

¢ ensy

Background and Introduction

For the past year I’'ve been trying to develop infrastructure to host OI/CTF
problems, and recently I’ve been playing around with kubernetes and figured
I should share some stuff I’ve discovered, particularly on the network side
of things. Though I'm still learning how kubernetes works, I hope that
through this article more can learn to route traffic in kubernetes!

Services

Before we get going with network stuff, let’s first understand how
kubernetes works.

To deploy a simple program, one creates a group of container(s) called a
“pod”, and runs the program inside it. These pods run on one or more
servers, often spread across different locations, called “nodes”.

Pods with the same label selector(defined — ‘
in a configuration file), can be selected q Tw-wy; M\'\%&B&‘
/ ‘3

and grouped together, forming what is known
as a “service”, allowing one to load

balance requests to pods and more. v W - NoDE- r
Here are the different types of services / i?odd\?ﬂ?deq
one can choose from: \

~

ClusterlIP

) e, |
ClusterIps exposes pods to the internal q Tw-l\ly't \M

kubernetes network, for example, you can

use a ClusterIp service for database /// .
pods, as they should not be publicly B C\/@-&fﬂb\(\\ﬁ'w
accessible. - NoD&- Fal

/
Additionally, one can also expose L —

ClusterIps using an Ingress.

NodePort

A NodePort service exposes a port[30000-
32767] on your nodes(can be chosen with
label selector)(each node should have
different ips, so you access the service
with http://nodeip:portyouchose).
NodePort alone is very troublesome to
work with, because you’ll have to
maintain a list of ip addresses of the
nodes, which may scale up or down.

10 KNOWLEDGE SHARING

Load Balancer

A load balancer service is built on top of the NodePort service, but adds
load balancing functionality to distribute traffic between nodes. The
service creates an external network infrastructure to direct network
requests to pods in the cluster. Cloud platforms that host kubernetes
usually offer their own load balancer services to manage external load
balancing, which is often pricey and hosted outside of k8s. Load Balancer
services have their own unique, publicly accessible IP address that clients
can use to connect to.

External client -> Loadbalancer(http://x.x.x.x) -> Worker node IP ->
NodePort -> ClusterIP Service -> Pod.

Ingress

Though not a service, it can act as a router in front of your services,
exposing them to the outside world with subdomain based or path based
routing, and can be accessed via a public IP address just like a Load
Balancer.

/ e A
9 W - N°Beq$5{\\ _) ot St

/ oM\ '\300“3
=2 A

\ & R S

—

7/ \ 'W
| ot m\“‘\ "

-~
\ e m— - -
ORI = - I
= —mn
R\ \
o
e —
KNOWLEDGE SHARING

11

‘{’ﬁﬁ Flipper Zero #1591 2 NFC

ﬁiﬁﬁ'ﬁ GonJK

SRR B L Flipper Zero MERREE AR, EFRE Mystiz BEEXHEEARZEREF
BT, (Ki%)

fHE82E Flipper Zero Fi{%—38 Hardware Hacking MIE 7], MR EBRINEER RN IR R
BS, BERERERSMERHEERTME, SHETEE[ENBTE DG,

Flipper Zero %k Tama-gotchi ?

R & F iR KL Flipper Zero B LA IE FEMIDIRE : HOREImSE,
e NFC (High Frequency Card)

RFID (Low Frequency Card)

Sub-1 GHz Transceiver

Infrared Transmitter

GPIO Pin

iButton

HERENIE

Firmware Flashing

I Flipper Zero 2B, HE®EES% Flash W@ Firmware {E. Flipper Zero [R 4L
Firmware £ Block WEXMThEE, #1401 Sub-1 GHz ¥y Frequency MHEE, AN 48
Unlock fiE Feature BIEERILAZE & Xireme Firmware' 83 Unleashed Firmware?, M
Hfirmware BRUEFREEIE feature Z 5%, HE@IEHM developers B plugin A%, £&

%meo { v.
EZBBEMAGETTLBAE GitHub all-the-pluging®, T B @ FAEE plugin. D ———

BEEA AL nuttyshell FTdER .
i :Flipper Zero plugin 5% compile [& Firmware & version, Fk#— down FtFH#%.
2 BRHRENZHEE, XFW EEE contributor HiE H 2 &E Momentum FM*, #3#47/,

NFC

BERUE— AR R4 A High-Frequency Card, & & 55Mi{% Mifare Classic 1k
(RREHEBRBRIMMIETER),

Mifare Card FHEBIRNEFXH:

e Bruteforce Attack (Nested Attack) A 320 BEKHEK, Pika Pika
e Sniff Key (Darkside Attack)

Nested Attack

B4% Mifare Classic 1k & 16 {8 encrypted sectors, F{EF LFSR 5 R EfEMHEEIE
th—{& HLATLL Unlock & Sector, (R LFSR State Rollback)

A WREREE gL R E A default key or simple key ETLLE#{%& NFC keys® $8% , &

ZHRERAE XFW Firmware BCEE 3941 1§ key, RE User 1RE|HF—RE
sector —{& Key FLATLAT o

Darkside Attack

INRHIENFFE Key ME{% Dictionary AME, REEM Sniff WAL Read Key, Mifare

standard 2z & Reader respond & & 4 bits of keystream, EE{ Mifare card Lt

key A LAfREZ I B E . 78 Flipper Zero R #E Fuzz and Emulate card ID EE trigger

Reader Response, BBl iCopyX ME#E intercept reader@ card ZffMf & Pentest &HE Crack Key

communication,
it :Flipper Zero #bMiZ| Darkside attack, {1 Detect Reader read W :&-£351% Nonce Fi Mfkey32 i key,

! https://flipper-xtre.me/

2 https://flipperunleashed.com/

3 https://github.com/xMasterX/all-the-plugins

4 https://momentum-fw.dev/

5 https://github.com/Stepzor11/NFC_keys/blob/main/mf_classic_dict.nfc

12 KNOWLEDGE SHARING

https://flipper-xtre.me/
https://flipperunleashed.com/
https://github.com/xMasterX/all-the-plugins
https://momentum-fw.dev/
https://github.com/Stepzor11/NFC_keys/blob/main/mf_classic_dict.nfc

RFID & Others

ZE A Low Frequency Card (RFID), £ _t F Wiegand format #&f# encryption, Ef&
read 52 emulate FLRT L, decrypt #BIEIR,

& Flipper Zero BT decrypt £ 2, BLATLIAEEH —@ dump file, AR Z#%
emulation, M EME— 7 {% Mifare Classic %c3Z#&, Amiibo B NTAG 215 #hE

FLETIAR iCash 2.0
BHREXFEL/N

FiB/\EEZRA FeliCa (NFC-F), & #& iCash 2.0 A Mifare DESFire, Flipper Zero 58
LB FE, R EEE NFC craft attack, B L ProxMark 3 BXIE . ZE A Flipper
Zero %3E iCash 2.0 £ F7, {B{RxK1E read IBEIM,

But, &35 H iCopyXS (Compatible with ProxMark3) 2 1% —Efmt %118 1% 1¥ standard,
5% B Flipper Zero iE## NFC hacking tools {h & —EX B g, B EFR — S
, REEER B less secure B system,

HITCON 2023 &8 .2 —4 —3k CUID card 488, ErEEAEIMAERIETLITAH
BREBEEER, CUD EEZR—RAILIERIZERH sector B Mifare Classic 1k
card, tb—#%M% UID card BB M EMSHIRETH . BBEMW Reader EEH R+
BEEF{%{% Sector 0 BAEH, AILIE AMIEEE reject access, CUID Fh{RFHLE
detection 2 TIMEEY ., B2& Flipper Zero T LL{% Flipper Zero & Card dump &
physical #£1&% 2 T access system, & AREZI 758X B {REE online system B
NFC R&15:R Authentication ThiE, k% storage LR,

iCopyXS B HEFZI

Update on 16 March 2023:

ARIREEESR UMC Ki data IR CUID IR KEH, MNRIRITHE clone REBEFFWBLIES,
Mifare Classic original card il M1 &, @& {&ExHi 78 read-only, &2k EWAENE
1D BB writeable I blank card, #i# M magic card, Magic Card Gen 1 XAl
UID card, BIFESFR{BIRTEILL write T E sector, Z % Xt magic card Gen 2 (aka :

CUID card), iCopyX %] LA ## erase and write UID & CUID card, B&{¥ Bt S T Qgéééi"?oﬁiﬁﬁg
MR Mifare Classic, 5 A#F# M Ultimate Magic Card (UMC), B L emulate 18

Ultralight / NTAG, 2 WcIhgE{hiFMiIA] LL clone ## NAMCO 3k Ultralight, ©

BUT ! iCopyX & new PM3 client, REEIEFEHER UID & CUID, T Flipper Zero R

%1% UID @ UMC, #ABREZRBASTD:

UMC:>200 HKD

CUID / UID: <1 HKD

Uttimate Magic Card 023557 CUID- A

M

i BEBEESH newsletter W ERATRE, EFRTRIERLL share Bl conversion,

S (NRETE)
FAEEE T Flipper Zero EfthIhE, 1FUBEA Infrared ThAEEIR OWASP Meetup MERH R
3 Speaker {& Projector M, IR& T iOS 17 M BLE crash Bi4% R Flipper Zero fi&

PoC, HIEIEAESR Projector Menu # %
R H g

i HTHSAT, (25 —1{@ Speaker ZEHEE.,

8 https://github.com/RfidResearchGroup/proxmark3/blob/master/doc/magic_cards_notes.md

KNOWLEDGE SHARING 13

14

Threats Analysis for Running Out of Paper in Public Toilets

apple

Threats Analysis for Running Out
of Paper in Public Toilets

Running out of paper (ROP) in a toilet is one of the
most undesirable outcomes to happen when using a

toilet. In previous literature, Youtuber @lambdatech

concludes that an RFID-based door lock system can
prevent ROP under all circumstances. However, the
video failed to comprehensively analyze the threat
landscape associated with ROP, overlooking several
crucial aspects like supply chain and contamination,
thus rendering its conclusion unreliable. In this article,
we will perform a threat modeling for toilet paper in
public toilets, focusing on ROP. We will also review
existing ROP prevention controls and products

worldwide.

This article attempts to answer the 4 key questions for
threat modeling of toilet paper:
® What are we working on?
Asset profile of toilet paper (TP)
® What can go wrong?
Threats leading to ROP
® What are we going to do about it?
Controls for ROP mitigation
® Did we do a good enough job?

Existing controls for ROP resilience

The security objective of this article is to mitigate
possible threats leading to ROP situations, meaning
that “no toilet paper could be used”. Other undesirable
outcomes for toilet usage are not a focus here. We
would consider a public toilet in a shopping mall when

considering the threats they are facing.

Asset profile of toilet paper (TP)

The first step in understanding the possible threats for
ROP is identifying assets. We would do so by
examining a typical use flow of TP in a toilet to

understand its intended usage.

Use Flow: Enter the toilet cubicle, Defecate, Take
around 10 ~ 100 cm of TP, Wipe, Flush and exit.

KNOWLEDGE SHARING

Janitors are tasked to refill TP periodically: Purchase
toilet paper from retail, Store it in a storage room, and

periodically check and refill the TP holder when empty.

With the above information, we can create an Asset

Profile as follows:

® Asset: Toilet paper

® Asset container: TP holder, Storage Room

® Actor (Users): Toilet user (Outsider), Janitor
(Insider)

® Access: Toilet users should only take an
appropriate amount of TP from the holder’s
dispenser. The janitor should refill the TP from
the storage room to the TP holder by opening its

cover.

Also, the TP must fulfill some CIA requirements to be

usable:

® Integrity: TP should be clean, dry, and suitable for
wiping sensitive skin.

® Availability: TP should be available a// the time in
the toilet when the mall operates. It should be /ong

enough for wiping.

For simplicity, we would focus on the TP itself and
ignore the threats to the asset container (e.g., the TP
holder). The TP supply chain would also affect its
integrity and availability. Trees, water, and electricity
are required to produce TP, and their
integrity/availability would affect TP production. We
would not analyze the risk of supply chain attack in this

article.

Threats leading to ROP

We can consider “running out of paper” as the outcome

of two kinds of risks:

1. TP used up. There is no TP in the TP holder.

2. TP is unusable, such as being unclean, wet, i.e.
contaminated.

There are many outside or inside threats that could

result in the ROP situation, and we can identify them

by constructing a threat tree (attack tree) by

considering the following factors:

https://youtu.be/vaX6sy4ZVyo

Actor: Inside (I), Outside (O)
Motive: Accidental (A), Deliberate (D)
Outcome: Disclosure, Modification, Interruption,
Destruction/Loss
For simplicity, we would only consider human threats
to the system. Natural threats, such as humidity in
spring that causes TP to wet, would be omitted from

the analysis.

With the threat tree, four main threats leading to ROP

could be identified:

® [[,O/AD/Destruction] TP Contaminated
during usage or cleaning

) [I,0/D/Modification] TP Stolen from TP holder
or storage by user or janitor (insider attack)

[O/A/Interruption] TP Used up during usage
[O/A/Interruption] TP Out of stock in retail

Controls for ROP mitigation

With the risks and threats identified, we can consider

the appropriate technical, physical, or administrative

controls to apply. Typically, the controls fall into the

following categories:

® Preventive: Avoid or deter undesirable events
from occurring

® Detective: Identify undesirable events that have
occurred

) Corrective: Correct undesirable events that have

Existing controls for ROP resilience

Let us look at controls and products around the world

for ROP resilience.

Preventive - Used up

Preventive - Stealing

N

E — F?T;z; I
WIS A\ (BRI 7 (A
LMEEARIRS BREALD

Toilet in ICHIRAN (—

Toilet in China

By) equipped with

equipped with facial

Preventive - Stealing

multiple TP in HA setup | recognition to prevent
abuse
Preventive

DN —N— IS —

Deterrent signage for

A commercial TP holder

toilet paper stealing in
Japan. It says “Famous
to be stolen - Toilet

paper roll - 50 yen each”

that mitigates ROP from
3 threats: achieved HA
to prevent use up, spare

TP fully covered from

occurred, or recover from undesirable state contamination, and
® Compenstion: Provide alternative solutions locked to prevent
stealing
The following table summarizes the applicable controls:
Contamination Used up Out of stock Stealing
Preventive Fully covered TP | Multiple rolls of TP | Prepare enough | TP holder / Storage
holder to achieve high | stock in storage to | room with locks
Moisture / dust | availability avoid regional or | Signage to discourage
proof storage room global ROP stealing TP
Detective Check if TP are | Checkif TP available periodically
contaminated Install sensors / CCTV for ROP / stealing detection
periodically Audit trail for TP usage (detect insider attacks, too)
Corrective Add signage with telephone number of the facility / call button to call someone to bring TP
when ROP. Refill or replace TP when ROP
Compensation | Encourage wiping using hand by installing soap. Install washlet (smart toilet seat)
Purchase alternative TP, e.g. bamboo-based TP

KNOWLEDGE SHARING

15

https://tw.news.yahoo.com/%E7%89%86%E9%9D%A2%E6%93%BA12%E8%A1%9B%E7%94%9F%E7%B4%99-%E5%A5%B9%E9%80%B2-%E8%98%AD%E5%BB%81%E6%89%80-%E5%82%BB%E7%9C%BC-%E7%B6%B2%E7%AC%91-112400034.html
https://www.nbcnews.com/news/china/china-fights-toilet-paper-theft-facial-recognition-technology-n736236
https://www.nbcnews.com/news/china/china-fights-toilet-paper-theft-facial-recognition-technology-n736236
https://www.asahi.com/articles/ASQ2V6VMBQ2GPIHB00Q.html
https://www.takaranet.co.jp/2r-tph.html

16

Introduction to Generative Model

streamline

Introduction to Generative Model

The diffusion generative model is a class of latent variable models inspired by
considerations from nonequilibrium thermodynamics.
(hitps:/arxiv.org/abs/2006.11239v2)

It is in a high level, generating noise in latent space(known as latent noise),
then use pretrained node to level by level, denoise the image into existence
with the text prompt user input.

The pretrained model is obtained by training from the original dataset of
image+ captions(text) and with large amount of compute resources, linking
text concepts with image presentation, in this way, when not over-fitted,
would be able to correspond to the user input to give image output that relies
onto the text description.

A standard sd1.5 structure in a high level can be divided into below:
clip » diffusion pipeline(unet) > vae - output

clip breaking down user prompt input into chunks of tensor data
that gets deliver into diffusion pipeline

diffusion | where the noise image is generated and the denoise process

pipeline is conducted (upon into latent space,which is still not final
output that human can understand)
vae converting latent space into pixel space(simply think of it as

decoding the encryption of your message in a messaging
app),which means the final output of an image

In a standard ai image generation, users might use stuff such as controlnet,
animatediff, or other plugins/models that affect the final output, most of these
are effective to the diffusion pipeline during the denoise process of images.

The older Deepfake setup is no longer available as the original roop plugin
have since been unsupported by newer version of sd webui, and would require
a rewrite that im lazy to do, here is a new setup that might require some
modifying of the plugin to effectively do for video (it would be updated later so
there is a batch process inpaint mask generating in segment anything tool,
which allow batch upload of video frame+grounding box base on prompt, all
automated):

Use forge version of aii11 webui, in parent folder of a1111 webui, do as follows:
git remote add forge https://github.com/11lyasviel/stable-diffusion-webui-forge

git branch 1llyasviel/main

git checkout 1llyasviel/main

git fetch forge

git branch -u forge/main

git pull

To update the a1111 into forge version,then download the plugin from
https://github.com/pkulivi2o13/multidiffusion-upscaler-for-automaticiiii in
extension tab, enable and reboot the webui, download photomakervi.bin

model from https:/huggingface.co/TencentARC/PhotoMaker/tree/main
obtain inpaint mask from

https:/huggingface.co/TencentARC/PhotoMaker/tree/main, put it inside the
/models/controlnet folder

KNOWLEDGE SHARING

e) <
denoising step crossattention switch skip connection concat

the image structure is from before
SD3,applying to sd1.5,sd2.1,sdxl

Pseudo code example of how a

diffusion model works:

CLIP is a model / function that
transform your text prompt into a
tensor embedding

textual embedding is a float vector
that machine can understand

context = CLIP(text prompt)

initial noise latent that will be
denoised later
X = noise_generator(seed)

ControlNet preprocessor, example:
line art preprocessor converts a
color image to a line art image
cond_hint =
preprocessor(conditional_input_image)

for i in range(steps): # denoise N
steps

ControlNet is a model /
function that can map cond hint image
into cond hint latent for each latent
output of hidden layers

cond_hint_latent =
ControlNet(cond_hint, x,
timesteps[i], context)

UNet is a model / function that
can predict how much noise is added
to the output image

given input noise, noise level
and textual embedding

predicted_noise = UNet(x,
timesteps[il, context,
cond_hint_latent)

sigmas[i] is a float that
represents the noise level, related
to the timesteps[il

X = x - sigmas[i] *
predicted_noise

VAE is a decoder that can convert
latent space to pixel space
output_image = VAE(x)

def UNet(self, x, timestep, context,
cond_hint_latent):

x = self.input_blocks(x,
timestep, context)

x = self.middle_block(x,
timestep, context) +
cond_hint_latent.pop()

for output_block in
self.output_blocks:

x = output_block(x, timestep,
context) + cond_hint_latent.pop()

return x

https://arxiv.org/abs/2006.11239v2
https://github.com/pkuliyi2015/multidiffusion-upscaler-for-automatic1111
https://huggingface.co/TencentARC/PhotoMaker/tree/main
https://huggingface.co/TencentARC/PhotoMaker/tree/main

in the tiled diffusion tab, do the following:
enable region 1,drag the box untill it fit the face,scroll down and click generate mask and save the mask

Save Region as a Mask

in the image to image tab,under inpaint upload, upload as follows:

leave everything as default,set dimension as you pleased (multiply of 8)
denoise from 0.4~0.6, enable controlnet as follows:

photomaker are the one for the face you want to swap to,input the prompt with least amount of description
such as a man,wearing glasses,close up, add a prompt of “a photo of photomaker” at the end then generate:

KNOWLEDGE SHARING

17

 Interacting Breakpoints with OWASP ZAP API

A‘l\% vikychoi

Intro

OWASP ZAP is an attack proxy which is capable of intercepting HTTPS traffic, modifying and
replaying HTTP requests. It is a freeware that is highly comparable in terms of functionality
with Burp, a commercial product that is the go-to proxy in the industry of penetration testing.
Considering that I rarely find good materials that share some tips and tricks on ZAP's less
well-known features, T would like to introduce you to the APT interface of ZAP and share one of

its relevant use cases in real world testing.

Breakpoints

Breakpoints allows you to intercept a request from your browser and to change it before it is

submitted to the web application you are testing. Let me share with you what it could do.

1. A break on all requests and response could be achieved by toggling the . button.

2. You can also edit the request directly by simply clicking and typing on the request
header or body in the Break tab.

3. Clicking on the step button [would submit the request. The proxy will step to the
response of the previous request.

4. TIf you clicked on the continue button 3, it would allow all requests and responses to
pass through until the next breakpoint is hit.

18 KNOWLEDGE SHARING

Use Case

Why would you need the API when there is a great GUI easily available? Consider the following

scenario that I found on the PortSwagger forum that would also apply on ZAP.

ly, there are certain timing const s which prevent me from manually pasting the file. Is

vould | need to write an extensiol

s on an interc

10dify relevar

So long story short, ZAP APT could be the solution for tampering requests with sophisticated

payloads under time constraint. IMO, It is less laborious than implementing a burp extension.

To implement a script to solve the simplest case of tampering a specific request, add a HTTP
breakpoint, loop to check if the desired breakpoint was hit, and modify the request. Forward
the request and disable the breakpoints. This could all be achieved with a simple python script

that interacts with the relevant APIs. Checkout the following link if you like code.

https://github.com/vikychoi/code_share/blob/main/demo.py

Real World Example

Mobile applications that utilize eKYC would usually send dves -

X AREn X ARER

multiple images to the backend server to verify the il il
BemE R RENDENS

validity of the credentials and liveness of the human

image. By swapping images or videos in the request body (=) A~
L)

with something like AT generated documents or faces, Nt

you might be able to achieve spoofing. Usually these
applications would usually be hardened with encryption..

You could tamper the relevant encrypted HTTP

messages via the ZAP API easily once you figured out

the encryption scheme.

KNOWLEDGE SHARING

APT techniques studying: DLL sideloading

botton

DLL Sideloading is a technique that exploits the Dynamic Link Libraries (DLL) search order in Windows to
execute malicious code under a legitimate Portable Executable (PE) file.

There are three primary methods through which the DLL Sideloading technique can be abused:

1. Code Execution on DIIMain: By manipulating the DIIMain function, attackers can achieve code
execution when the DLL is loaded.

2. Code Execution on DLL Exported Function: Attackers can target specific exported functions within the
DLL to execute their malicious code upon invocation.

3. DLL Proxying: This method involves replacing a legitimate DLL with a malicious one and redirecting the
application's calls to the compromised DLL, allowing the attacker to execute unauthorized actions.

When a PE file attempts to utilize a function from a Dynamic Link Library (DLL) file, the DLL file is loaded either
at link time or runtime using the LoadLibrary or LoadLibraryEx functions.

DLL Search Order

Developers have the option to specify an absolute path or just a filename when referencing the DLL file,
particularly when they are uncertain of the exact , .

- =
installation directory. If the full path of the DLL file is g ‘ S
not provided, the system follows a predetermined 9 ¥

E { Known DLLs

search order to locate and resolve the path.
Unfortunately, this search order behavior can be
exploited by attackers to execute malicious code within
a seemingly legitimate PE file to carry out malicious
activities such as code execution, persistence, or lateral
movement by dropping a malicious DLL file in the
application directory.

Y
Application’s directory
Y
System directory (C:\Windows\System32\)
Y

|
1
<
J
16-bit system directory (C:\Windows\System\) } &
]
J
]4_

Y
Windows directory (C:\Windows))
Y
Current directory
Y
Directories listed in %PATH%

o
-
o
(-4
(o]
T
o
4
<
w
"
[~]
=
<
o
Z
=
"

Code Execution on DIIMain

N e ey ey Y

The DlIMain function serves as the entry point when a process loads a DLL file. Typically, we place our code
within the DLL_PROCESS_ATTACH case, which ensures the code is executed as soon as the DLL is loaded.
However, it's worth noting that this may not always be the case. Some programs may not invoke the entry
function because the function call might have been prepared in advance using GetProcAddress, or deadlock
issues may arise when creating thread tasks.

When you call CreateThread, a kernel thread object is created and scheduled. Once the thread gets a chance
to run, the kernel calls all the DIIMain functions with the DLL_THREAD_ATTACH code. Once that’s done, the
thread’s entry point is called.

Code Execution on DLL exported Function

Exported functions from a DLL can be used to avoid the issues mentioned earlier. These functions can be
obtained using tools like PEBear or Dllviewer. The names of the exported functions are hardcoded in the
symbol table of the DLL file, allowing us to retrieve all the exported functions from it.

KNOWLEDGE SHARING

20

Exported Functions [322 entries |

Offset Ordinal Function RVA Mame RVA Mame For
1CTED TC 1EGES 1E6D2 AppCacheDeletelEGroup

1CTE4 D 1E732 1ET1A AppCacheDuplicateHandle
1CTER 7E 1E777 1E766 AppCacheFinalize

1CTEC TF 1E7BD 1E7A4 AppCacheFreeDownleadList
1CTFD a0 1E208 1E7F2 AppCacheFreeGrouplist

1CTFR4 a1 1ES4E 1E83A AppCacheFreelESpace

1CTF8 a2 1E290 1EETE AppCacheFreeSpace

1CTFC a3 1E8D6 1ESBE AppCacheGetDownloadList
1C800) 1E921 1ES0A AppCacheGetFallbackUrl

1Ca04 a3 1E969 1E954 AppCacheGetGrouplist

1C808 86 1ESB1 1ES9A AppCacheGetlEGroupList

1C80C a7 1ESF4 1ESE4 AppCacheGetinfo

1C810] 1EA3T 1EA20 AppCacheGetManifestUrl

1C814 20 1EATO 1EABA AppCachelockup

a8 A 1EARD 1EARL CommitUrlCacheEntryA

1C81C B 1EB0O2 1EAEA CommitUrlCacheEntryBinaryBlob

To execute our own code within a DLL, we can compile a DLL file with the exact same function name and place
our code inside that function. Then, we can rename our compiled DLL file to the name of the DLL file we want
to sideload. For example, if we want to sideload msteamsupdate.exe using wininet.dll, we would replace the
original wininet.dll in the same directory with our modified DLL. When msteamsupdate.exe is launched and
calls the exported function from wininet.dll, our code will be executed.

By following this approach, we can take advantage of DLL sideloading to inject our code into a target
executable, leveraging the exported functions of a DLL to achieve our desired outcome.

DLL Proxying

DLL Proxying is another technique of exploiting the DLL search order. This approach is a bit more sophisticated,
as it involves creating a malicious DLL that mimics the legitimate DLL. Unlike the previous methods, this does
not solely rely on executing code when the DLL is loaded, but rather takes advantage of the specific functions
that the application calls from the DLL.

Before DLL Hijacking In a DLL Proxying scenario, an attacker would
create a malicious DLL with the same name as
the legitimate DLL that the application is
expecting to load. The malicious DLL would
include the same exported functions as the
genuine DLL, essentially 'proxying' these
function calls to the genuine DLL. However,
the attacker can insert malicious code into
these functions, which will be executed when
the application calls them.

After DLL Hijacking

P |

This method requires a more in-depth
knowledge of the legitimate DLL's
functionality, but it allows for a higher degree of control and stealth, as the application continues to function
normally while the malicious code is being executed.

Spartacus is a useful tool which associated with ghidra script to help us automatically to generate the proxying
function. You may checkout the details on the below for the usage of Spartacus

https://www.pavel.gr/blog/dll-hijacking-using-spartacus-outside-of-dlimain

KNOWLEDGE SHARING

21

https://www.pavel.gr/blog/dll-hijacking-using-spartacus-outside-of-dllmain

"~ PuTTY’s P521 vulnerability, and a LLL primer

Mystiz

What PuTTY vulnerability? The developers released PuTTY 0.81 on April 15, 2024, urging their users
to revoke the elliptic curve ECDSA private keys related to P521. It is announced that the vulnerability,
assigned CVE-2024-31497, would make a P521 private key recoverable by an adversary if they have
collected enough signatures from the victim. Additionally, the vulnerable function was in the code
base on PuTTY 0.68 up to 0.80". I was pretty interested in how the bug was engineered, so I dug into
their codebase. This is a snippet from their recent commit message®, where the vulnerability is fixed:

As far as I know, the structure of our scheme is still perfectly fine, in terms of what data gets
hashed, how many times, and how the hash output is converted into a nonce. But the weak
spot is the choice of hash function: inside our dsa_gen_k() function, we generate 512 bits of
random data using SHA-312, and then reduce that to the output range by modular

reduction, regardless of what signature algorithm we're generating a nonce for.

Their change in ecc-ssh.c, where the once vulnerable ECDSA signing function was at, showed that
they replaced dsa_gen_k() with the newly implemented rfc6979(). Interestingly, ECDSA key
recovery with predictable or biased nonce is not a rare topic in CTFs. There are plenty of ECDSA
key-recovery challenges like Flag is Win in TSG CTF 2021, Sign Wars in SECCON CTF 2021 and
Signature in TS] CTF 2022°. @Merricx_ from X also mentioned* that they wrote the exact problem
like the PuTTY one last year.

The ECDSA basics, in P521-SHA256. Let’s get started with the signing algorithm with P521-SHA256.
Ps21is an elliptic curve’, where you have a preset curve point G and an order n, which is of 521 bits.

1. Calculate z = SHA256(m).

2. Select a cryptographically secure random integer % (the nonce) from [1, n - 1].

3. Calculate the curve point (x,,y,) =k - G.

4. Calculate r=x, modnand s =£%"(z +rd,) mod n. If r=0 or s = 0, go back to step 2.
5. The signature is the pair (7, s).

It is fine if you are not familiar with elliptic curves. We don’t need to know what an elliptic curve is to
understand the attack - knowing some modulo arithmetic would suffice. It should be hard for
attackers to compute (r, s) from m without the private key d,, or to recover d, from (m, r, s). However,
it is not the case when they made a mistake, for instance, the ks generated are not random enough.

How is their k generated? PuTTY was using the dsa_gen_k() function® which BaZiNonce,Cenecatas

derives the nonce, %k, with & = SHA512(SHA512(d,) || SHA160(m)). The PuTTY &
contributor mentioned that “This number is 512 bits long, so reducing it mod »
won't be noticeably non-uniform™. While this is true for P256 and P384, it is not

the case for P521. With that, & is sampled from [1, 2° - 1] instead of [1, # - 1], which
is much smaller than it intended to be. The resulting % is very biased - its top 9
bits are always zero. If we are spinning the wheel of fortune (the nonce generator
on the right), is so biased that we are getting #® every single time®.

+ https:/twitter.com/Merricx /status/1780156751398203933

> https://neuromancer.sk/std/nist/P-521

¢ hitps:/git.tartarus.org/?p=simon/putty.git:a=blob:f=crypto/dsa.c:h=71fcdosa1343
TPuTTY used ¢ instead of n in their codebase. Changing the variable names for consistency.
8 1f the wheel is fair, the probability of getting a €» would be 1/512.

KNOWLEDGE SHARING

22

https://git.tartarus.org/?p=simon/putty.git;a=blob;f=crypto/dsa.c;h=71fcd94a#l343
https://neuromancer.sk/std/nist/P-521
https://twitter.com/Merricx_/status/1780156751398293933
https://git.tartarus.org/?p=simon/putty.git;a=commitdiff;h=c193fe9848f50a88a4089aac647fecc31ae96d27
https://www.chiark.greenend.org.uk/~sgtatham/putty/wishlist/vuln-p521-bias.html

How do we exploit the biased nonce for the private key? Assume that we have multiple
message-signature pairs, i.e., we have (m,, 7, s,), (m,, 1, $,),, (M, 7y, $\) such that

ski=z+rd,(modn),fori=1,2,..,N. [l

[{] comes from step 4 of the algorithm with terms rearranged. In the above equation, we have n (the
curve order, provided as a parameter of P521), g; (the message digests), r; and s; (the signature). What
is kept unknown are the %, %, ..., £y and d,. The size of the unknown is about 512V + 521 bits. On the
other hand, since the congruence is in modulo n, we would say that we have 521V bits of
information. When N > 58, we have more information than unknown’. We then can theoretically
recover the £;/s and d,. The LLL algorithm is a good mathematical tool for finding biased (or short)
integral solutions of equations, and we will be recovering the secret key with it.

Let’s suppose that z; and r;” are integers such that z/s; = z; (mod »n) and r/’s; = r; (mod »). [f] can be
wrilten as &; = z; + r/d, (mod n), which can be transformed to %; = 2 + r’d,, + xn with x; is an integer.

2%k 2% ... 2%, 2% du
T
[29%] 2924 ... 2% 2%%1] 1
2900 29 .. 2%, 1 da
29n ?
29n <7
299 7

We will use the above lattice (matrix with integers) to find short vectors using the
Lenstra-Lenstra-Lovasz (LLL) algorithm. The algorithm finds an equivalent basis where the vectors

10

are generally shorter. For simplicity, we will treat LLL as a black box" - What we need to know is

there is a . LLL() method in Sagemath. Anyway, we still have to learn how the lattice is constructed.

This is how I understand lattice reduction: The numbers on the right are the hidden integral inputs
that will be decided by the LLL, such that the numbers on the top are their outputs. To be exact, the
output of an entry is the dot product of the respective column vector and the input vector. Also, the
shorter the target vector is, the more likely that the vector shows up after LLL. Let’s use N'= 100 as
an example": The norm of the vector [2°%,, 2°k,, ..., 2%k, 27, d,| is around 2°**°, while the norms of the
remaining vectors range between 2% and 2, about 14 to 25 times as large as the target vector. In
theory, we will get %, as the first entry because 2%, = 2%z -1+ 2% - d, + 2°n- X, T 0 - X, + ... T 0 - X
The last two entries would respectively be

2321=2521~1+O'd4+0-x,+0-x2+...+o-x_‘c\~,and
d;=0-1+1-d,+0-4,+0-X,+.. 0 Xy

After all, LLL returns a basis (a bunch of vectors). If one of them being [v,, v, ..., Uy, Oyiys Uyl
happens to satisfy v,., = 2°*', we will be quite confident that the v,., is the secret key we want.

Lesson learned: Don’t mess up 512 with 521... Well, who invented the P521 to confuse people?

° Because 521 - 58 = 30218 > 30217 = 512 - 58 + 521. The link from footnote 1 suggested that we needed V' > 60. My
experiment with Sage’s default LLL setting needed V' > 9o.
° T don’t know LLL’s 1nternals e1ther Learn from Eason from another page in th1s newsletter or from Cousin if

KNOWLEDGE SHARING

23

https://gist.github.com/samueltangz/f7bf0dbfbfb01fa4a09dde8e58b3bfe1
https://www.klwu.co/maths-in-crypto/lattice-based-cryptography-basics/

(

o I

24

BRI

grhkm

INK.... K LL 3B

EARL » BB EF B E sleep-deprived BIRAEE THTHZR & [F32 A {Lanonymous
reviewerDF 5 D IMEEEE » FRAFRE & cutltechnical® » I RIEHEZ S +7AR4R D

&> background info/glossary P& hcryptolBE A :
* Sage: —fEPythonBImaths algebra library (+ preparser) > Mcrypto ctfR L H
R
% Isogeny: (Post-quantum) CryptolfEEH—{E53 3z » Felliptic curve BV Ei%
% y7, jack, hellman, drago1729: —Ectf5R B cryptot#l
* AN+ Wouter, Luca, Jonathan: —3Ecrypto SR

EREE+ B RIEMi-sage-ny days(= isogeny + Sage []) workshop > MELEFIBFIBIKU LeuvenfEig » B
B EBHregl (R HEIEER) o {EworkshopffAE$TSage » BEHKregEBIMTF LR EMEE KE 2 ER1ZR
crypto A o /NRIEI¥small potato 2 FiEprofessor&B i RiAM 7 (B Electure hell#BBARRB) » BRIAEI
SOTABIK R E » AR +E SR | BEASFEM R R WpaperEimplER{EWouter-Castryck attack » {B1%
EHRREBARimpl =

Day 0: ¥FMif#BEHE/ \BEES o2 FNERRIFEE L » BRITRMEIE - AR B o)
ZHIMITEME B EIRR > FRA SR B IFRM EARBRE R UL > MERRL A EREI(E
&) LS A B LEF & BE @ BrusselsBRER © I Elayoutié 5l » B & RS
RE—EERRE > BUrHR TRk LtE > SXEREARMBES » EfGRiRE
RIBBREIERIRE: - BAE | FHiEPL{ECarbonnades a la bieredF LU M e E
Y84 Mor something... EBIFRLFER » MEERIFEFRK | WA —INEIEHIXA |
Ik > EMEEREFR > BMEHFRmamadayZEXBYERESIRELFIE - ER » K
TNER MG AL AF L F) B0 B Blanche de Namur » {REEBUEZSHE o » B/ IkER~
— RN ERIEEE @
Rooms is 0. There's a god damn spider web next to my Leuven > ¢%5¥1%tb00klngc0m sort by price ’ ﬁﬁf
bed wtf? The only good thing is it’s relatively convenient | S 34 » ﬂgﬁfhosteliEUEfﬁEFEﬂCheap‘;ﬁr_ °

and also the cheapest | can find (apart from a youth COET Y E N =) y y . A= *
hostel. Should’ve stayed there!!) please don't come here ’ __];J—,(néﬁt&1§ Iﬁ < 51?53?55(:7)00@6 reYIeWS'fﬁ"}ﬂﬂz.S
you WILL regret it. (rewewﬂnﬁgﬁ) » FRAFER Bk Ereview o

RE/ED ANEILIEEE - BEFKR—EAEBIER > BiRjackRFly7

EntERIEEIA > SBEMNEMHAELNEATRE » REBEFUEN+EAE+A > tE8E&H
% | AL fERtalkMEfE - RE AL IIRREMEE L XpresentI f B IRFRER Fjack » B
FRRETLfRy7 - B HERBEEEIR(EMFIHE IE IE%hellman & A B L& G #R B
interludefZBHEELucafI £ B & E B Sage dev » &ERBAMBALRTF » LucaflzE"Okay
there are five of you, and there is at least one | don’t know...”Z % FfeelE| 2 [E M
ANERESMETR (FK 2722 /R IAER) L RS BE i (B self-intro » SHIFSE X BR3R - 2EBHIATT
code & & tbEuneventful BEEFEL o Tt ME44RF » Belliptic curve ~ hyperelliptic
curve[Elquaternion algebra » F/FABRSASE—EMEEEEETF o WorganisersE
% Tt 1B W8 — 25 pair programmingMi & code » FFtEjack—ZHCM method({E:8
ideakiRcode) o Futhzulip_EE A Htracking issues > HIiy7 suggestPELé@Eproject »
MK E CHEEEREERERE » BRBHEBIREY

Day 1: — E 1S &4 E#talk FEMSage tutorials] |RSSRAURCRAS '
#8325 contributeZ£Sage (review workflow etc.) o FEIMEEE Update I'm at the table next to y7 and jack

REGEF M KB campusBLEIEEE » {EMSIIFEHEE BrBigame » 3RAMAINR B (E M
—{ESilverman AT EZERF L EER o EIE/NEIBREREHE » y7aiEAIEMEEIER
BRSES AR AR EEF B I N8 38 1 LE B » A7 ER S

2K P &R Helmanr Snowman & [BE] > #5Awhite balanceld ik o

\ EVENTS

7 Day 2: 55 _8¥—FRtRF S 4HE BEHRMprogress °
g (Giacomo Pope S —HEARAXZEREEcode » I EXEBD AEHFR
» Youspent a lot of time helping other people | believe k?}&%&i$§1&open-sourced development (ﬁJtI[]forklﬂ%
branch) > FRAERREEBEEXZER - R LE—H—%» &
)R = B BpartnerfRcode © BIMNEHFILAIZE A Lai Yi Fu (BESiBisogeny paperlin]E & RiBE) o E
fESage X AZRAMEEI » FRAFEEinstaliR > (BABBEHIEE) MBFLELE={EE S TR Mprojects¥hs
FIEEEAGNU Make...

FHIEMBRERZERP.S. BHER 7 surprisinglyF !N A KT+
casually"H{BERAKisogenyBEE » Fpt & SMMIMIPXK + 13 RHIREITWtrivial ‘
question o FESF A BtripZ2RIHtisogeny R Z I sHA MK - HAEMER)
KRIEFAFEE2HAR » EREITETFWneuronfhiBAES - MAKES |
mixEEElecture EMAELL © HIUFIEER LE Llecturelp=Z815 0 B
FBRIRRFBIEE ElectureBEEBEZZEARNREE » MR Electurer®h
BREREANS » BA—EGFE)lecturerE F 2R EF M motivation[s]
intuitionfR » IS R BtopiciR+OEER) - B8 > FHRAEEMEEGR —
RfsE M lecturer > MisagenyZ (L ESABAMBIA o IEB5S —EENRF
A B EERYy7—2 B code © EOMMEE APRREE E{ERcodeRFEBIE » AIMNFKFRERFK 1%
BVIim(&#& Z & >>>> Emacs >>>>>>>> Rest) °* X REEM{EEcode -> & code -> tRcodefBiBIEES o &
BRAUTEFR R R ZRIPython AE#IF2 S & {Eeditor B > MikAIt + Return A AN Zlrunff EkcodelB 5 EI &R
EME1T » HEFAEMBshortcutiBEMEBIEELR
rm —rf. ../* && git ad:ﬂ . &&. git commit -m 'remove 1B TR L+ FDIEIBSRS o §§%y7] QAnywaysH
SR s e e e R BRGSO E QS BB RS HBT
Fpartner# ! Oh...

Day 3: BE|R%E—BM | HAEMWEAEBGERTI—BRESassignment + EtEEVLH > i52GI3BEE » Frlg
EFEER Bsummary A MEKEEHEB © BMEE R THRZEBEKRGEseminar > FHJonathanz&RAR—1E
U4 Quaternion Embedding Problem”lBtfE%E o A FK ¥ quaternionF 2 25 > FIUAK TR IEERA
TiBFKEFIonathan presentfF&4F > BMERTEERMormulas 2t » RiBEBAZIE
high-level idea » 39N B 2|Christophe Petitt 17 » {E/RZAMET ML AZ #research
» ZBERBPhDERIRE » FAERKIFLUEEEEZE = HEEZEREGREFZHA...

n Krijn K
a Chapter 16 of the handbook of elliptic curves
¢2)(ms3

(EE&E = article®] MreduceZbin packing » FrUAfANP-hard)

HEMBFZE e MUshare > $F%on9 bug > RiB#EA TARIE...

B postE AL EFlimit o BR1EE—(EfSEexercise/# AR . HstH FEIE
Slgenerating function (as a graded ring) > Z #&deduce—f&elliptic
curveldefining equationti B2z’ Merci d’avoir lu! 898

(p—2+1)=2p=dim(S,,); hence we have
83,=(82) 57,=(52)""% 800 %01 %10 911

for every p=2. Suppose next that k is odd, say k=2p+ 1. Then, in the
same way as above, we have

85p41=(52)" 990, S3,01=(52""" 841 910 911
for every p=1. In particular, we have
§=C[x,y, zJ,
in which x=3940, y=(8,1)% 2=%1 910 %11-

EVENTS ’ 25

ok i B 5k A9 3

Onsite Hardware Problem in SECCON 2023 Finals

harrier

%RSECCON Final #8523 = T &5 #BTonsite hardware®

R, REFBISEZRMH : {Effplatform 2B —1@encrypted zip 18 (EiE—{EiFEEET#EE S = description)

SEXEE—EAECIRBEE (BBIER) , YBHIRYEIFZURR]—{Elcircuit diagram, —3Rrule, zip {Elpassword
(AZfFraspberry pi Bf source) FIE—EEY) (aka BigR) BIEL

(MRIRRIM BRI SEiRhR, BBEB1E “Challenger Editable Zone” [EMiFkithattempt BEAE)

WAz et Se AN EA 0¥ « —(EEREMEURA—MBEMRIE—IR “defuse” [EEIEIRELattempt ; AZRIFRE
=30 T BRMRISEEEAMLETWMER ((PHERMAETEBARAER+EBRH) .

+3V3

M BARIREF ARIRE R ZRIREIATH defuse BT IE.

U4

‘741v¢1617508 ‘"l 741ve1617508
o) " Lo g oft{eriey [oaa3 ¢ artAerey
{Elchallenge A #I44MIEE, target (FTMEG fip flop M5y~ | = | o o [
bC pC
set (aka value = 1) = defuse P 6| =
D flip flop Bfmechanismf®, &ECLOCK (CLK) {%raising edge (E4 — e i
0 #+1 8TF) {EfBloutput (Q) FL&sync DATA pin Efvalue. re Rz3
P Fith{E B 4E%SDATA1 EIDATA2 #Bset (Bl{%high voltage),
tmmZset EImiEd flip flop. Do nat CUT or jour defusing is doomed.

GND

DATA1 REcut Bi{ERE 32 =1{Eresistor Bfwiring el
SEE high (ABcurrent E % Eresister #& ground 7
iE, BEEEAMED flip flop &)
DATA2 ZhLEESRRIE, EIFMEICLKAREAGP17 derive HEREE
, BAR E{EBvalue FICLK1 2—1E—#%k, Ealternating,
ity AT DU cutiRBE /5 5520 Eki=set, FBHE
CLK2, _Li&HfEltransistor (Q2), transistor FLiF—1&
B, ERFIEREYMUREG)EQR)ER, RE (1)@
& (high signal) BXRHE, ERELEILA (3) £(2). AR
Q1BE(1)REUEGND, E—EEBMZR 0V, TEEE3.3V (+3V3)
PEEREECLK2 B, FRILACLK2 —E&#MRE,
ESETRISEZMEQ flip flop, FIFAERDATA2 1% SET BX
iR, ZEIR26 T32Q2EGND Efconnection, SEF I
#ER26 72l (1) instead of GND. MHiREENZISERE(3)Z5(2) SETAEICLK2, FAER—Tset Bfraising edge 2%
D flip flop Bfoutput sync DATA2, #FRERRGP174%—1& 1072558 —RBICLK (FRLADATA2EMR) , BIHABIEs
EIZLERER, FMEEEEIR part Bicode MUA GP17 $2#~50 Hz BX CLK & RNBABIERRIHERBULIEEIT
(B{ELED D3 show ZlElclk ffset i unset)

HRERERSIFEIRE RSP UEEER, (BRZBEMRRIRIR A ECcircuit diagram FEIEEEIEiFexecution
plan, Effcut {REIBRMUIBERAM, FT&XFEIEERFFECUREMEMT, =EIEF defuse =+ get flag.

26 EVENTS

SECCON Trip in Japan

hoifanrd

SECCON Trip in Japan €D e secied o eamname e

In December 2023, | joined the SECCON CTF Finals 2023 held in Tokyo, Japan, @ i&
associated with the team Mystiz’s Fan Club. Our CTF team actually has a great bl
long history. | and one of my teammates, TWY, have been finding other CTF [R -
friends to gather a 4-man team every year since 2020, to join the annual HKCERT @

CTF (and we won almost every time!). This year, we have found the other 2
teammates, Hollow and botton, to join the HKCERT CTF 2023, and we have won
the 3™ place in our category. Originally, only the 1% place will be invited to join
the SECCON CTF Finals directly. However, since the 1% and the 2" team
abandoned the opportunity, therefore, we got the chance to join the ﬁ)

competition. This is how our team’s
name gets decided.

botton

>

gehi
hoifanrd
gehi

SECCON CTF is a well-known international CTF, and it is

hard to get a position for its finals. We were excited to have a chance to join the
competition. More essentially, the flight tickets were fully sponsored by HKCERT!
Everyone knows that the flight tickets are extremely expensive during Christmas,
and | am so glad that | got a free trip to Japan. Finally | went to Japan for 14 days,
two days for CTF and twelve days for traveling :P.

| am one of the participants
of SECCON CTF Finals! Indeed we understood that we were the weakest among all the teams and were

pretty sure that our team would be 1st on the scoreboard (counting from the
bottom), but it was absolutely a great chance for us to learn (and to play). On the 1%
day of the CTF, as a crypto player, | noticed that 5 crypto challenges were released,
and | started to work on them. Unexpectedly, out of the 5 crypto challenges there
were 3 challenges were about Quaternion (which | have no idea what that is). At
that point | knew, | GGed. Anyway, | started working on KEX 4.0, which is DH Key
Are w cohing for sﬁack Exchange on Quaternion, with TWY working on another crypto challenge (DLP 4.0)

party instead?... at the same time. A few hours later, TWY solved DLP 4.0 while | was still working on
KEX 4.0... (TWY so strong!).

I spent so many hours trying to solve KEX 4.0, | think | had spent like 2 hours finding the name of the scheme
and another 3-4 hours on finding paper for the attack on that scheme. Finally | found a paper describing an
attack on the scheme, | just implemented it and | got the flag, which | had totally no idea why it worked (Mystiz
told me after the competition that he thought the attack himself at that time, too strong!). Afterwards, |
started to work on muck-a-mac, which is a challenge about cracking ChaCha20_Poly1305.

The 1* day ended after | started working on that for some time. My teammates and
I went back to the hotel for rest, planning to work hard on the next day --- and this
is how we screwed up. Since all the challenges were released on the 1* day, all
other teams continued to work on them during the night in the hotel, and every
team (except us) submitted lots of flags immediately at the start of the 2" day.
Anyway, we didn’t really care about the score a lot from the beginning... | tried to
solve muck-a-mac for the entire day in Day 2, but | failed to solve it at last. | was in
the right direction, but | was just bad at constructing lattices to perform the LLL...

In the end, our team was the last team on the scoreboard with 375 points (with
the second last team having 1258 points...). However, | am still proud of myself
since before the start of the competition, | said to myself that | would consider | Some places that | have been
have won if | could solve 1 crypto challenge, and | did it! This is a really precious to during the Japan trip:
experience to me --- this is the first time | go to Japan, this is also the first time for UL — Maid Café

me to join an onsite CTF, which | enjoyed every moment that we worked as a (For Anime Pilgrimage)

team together, and | believed that it would be an unforgettable moment in my U;L"Lkihabara
= Numazu

life. BR — Comiket

EVENTS

27

28

HEifRmae X

Isekai Tensei Hakka

IS A% ? Ll Black Bauhinia CTF Team & RBE# BUES/N R IE RAEFE 215 | aNRR48
(or FEAE) {RHEIFFEA/N GRS, 55 Send 1BTC & @ozetta, {REIE R A AIREHIEM,

E—% — WOG FFA Battle

BEEH:
https://github.com/blackb6a/blackb6a-ctf-2023-challenges/tree/main/20-isekai-tensei-hakka

FE — E#EIRE
“We are most likely live in a simulation — Elon Musk”

Mg, REAIHKXREE 7 | EEERRE.
EREETHEEHIR T —ARRABEN, SHESHERBRERHIBE,
ERBERGA A EEETRERIRBACRINE S E), 18 R 2P,
HKFEORT—0: T2, TREBT—KRX Flag R |

t@ T —4: [you TR, Hi¢AEEEM,

HATDEZEREN, BERRESARFIRERITKR T RE,
RAEAMRIBE 4 Fh ot RB TR 285,

EHEFENE, BEHREEELTISENERR, fINMLEEEH,

EEZERRMHER, EEHEEAREL T "First Blood" & 3K,

[R7R 2 EPILZEMMAE T Crypto @8 H,

EEiX: T /&% DeathCoin CTF My Web ZEE %418 Pwn &
FiEER TR, & Source Code #FER, R BEZEEIEE
REBRAZEEHREE SILENERRREBNAE T(BFERTRZREEMED).....
REBEZAARRT,

fRTHH, BEHEEEAEHIIAETFE Yes], Reverse BIIZZEEHEERE,
RARME Flag T, EEBEEINRNUFEEE T —E Orz HRIFFHR.
XfmT—A8, EfEVEMEE| Flag T. B Web BEMLL Pwn 785,
MEWEEN, BEEERERM, |IEEHRE,

MEBERRF —EHFENREA BESF—EHAXZEE?
FEHEEREXREESHRIRER, HWEBRTRA—2......
EREEE=HZET......

\XD-HI]I]

https://github.com/blackb6a/blackb6a-ctf-2023-challenges/tree/main/20-isekai-tensei-hakka

F—E — BREE
EREBMLE RRRACSE—BFENEM,

ERZHEE?

TRE FRM(K) | —[E5k 2 B AR ER,
RATHIR T —EFBMNERRE BRELELIMEHRELERHE,
BREBW.TORTLI—IL AVARGL IRAT AR AR

— B ...

[RERIIAZSEIRERERELERE? IRZERE,

Fofnh B{RMEE, RS FTEHEESRAE, |

KAAETT, BEREEMEREMT Sublime Text, FIERE 50 AMESHER,
DR TP EEE vim B, INRIBFRABABBREE, |

lvim 37 KISHREE |3k 2 B BAEIE,

MRk~ 1 EFWU T —T,

[Z, BREEFHKIERE(R, IBMERY Za Warudo no Sosukodo]

0¥ Sudoku & ? | EFE — BTN imithER =,

[Source Code Wi, BEEMEHRE BAEA L EFEE, KKAERARM, J
[ERAREE flag.txt? IR THZ B,

MMRIEZRESFEVEERE LT CTF T &

[REEKIET ?

MEEXE, & flag W, IRERZZE R, ZIS5M, 75 Harder......]
HE28[Dockerfile TEHMME, BEERR 2 EREEHT,

ErRAEZRIMEERRE, FMEEHARIMIREE, KT —T.

B RMUKEATTRIRS: EEAMKFE WA} <>, "'\ F/5HR<]
REBE/NMEREEZER?FRZEB?HERERAEGET—T,
KERIGIEEMETR T 2l wog _chara make.php , ERRERERELERMNE,
EEMBIEFARINAREERREE wog act.php, HXHGKIEREER,
K47 wog _chara make.php FIZE60E611TEMERMMIKREDRH,

(7 5ll2 f=chara 1 act=save), FIXT wog_act.php F 77 ITHIEENIEF:
$wog act class->chara save ($Sbbs id)

EEHMBE? R chara save 7 class/wog act chara.php M,
EFEEA - KEBERGR.... A EZEERNERTEY HEEAKMW?
EBET—T HBREREMNAEEEF/IANEAEEEESBCRISMEMEE S,
RHBREREERERY:

if(((int)$ POST["str"]+(int)$ POST["smart"]+(int)$ POST["agl"]
+(int)$ POST["1ife"]) > Swog arry["total point"]) {//error}
FIEHZREBIN A HME, B2 DEETFZ AR php interpreter 1,

AT RIZEN X2 T RAREE,

KRB REETR T #ERHIRT chrome: //newtab HEMH,
EOENRHEEATEES !

A[]-Hl]l/ 29

~

"
= P
q @

30

d B
iy

@
~Cp

HEifRmae X

Isekai Tensei Hakka

BIS %A NS 2 LL Black Bauhinia CTF Team 4ARE# BIES/NiR EEXEAE IS | INRRAE

(or FEAE) {RHEIFFEAR /NGRS, & Send 1BTC & @ozetta, {REIE R A AIREMHIEM,

E—% — WOG FFA Battle

B2EEH:

https://github.com/blackb6a/blackb6a-ctf-2023-challenges/tree/main/20-isekai-tensei-hakka

EE — mAFNETER
FEZEEPBEFEMNIAEREDEENITNG, HATREER TEEERRE,
I HE class/wog act chara.php HIIRIAHE, BREWEEI 108 = 118 1T,
RE|—LEFELl ($_POST["str"]+8) WIRTE, FHREMT 8 BHIEREREHEIE,
(5%:str 215 strength A2 string, int 2§ integer MA =& intelligence)
BEAFHEERGEFREEE (int) B? A ESEXXTRAE ?

1 (int)Sx+8 F $x+8 A AINE ? ERRAM PHP IR EEMNERE,
EMEETHRT, ARERUIES T PHP IRAEFHERMEN, EREIR.
https://www.php.net/Changelog-7.php#7.1.0

(int), intval() ... integer operators and other conversions
now always respect scientific notation in numeric strings.
BRERAH PHP FREERSRHBE, (FRRHA 2T [FEEE PHP))

BE#. 32| 3v4l.org E&EE T —F : https://3v4l.org/GnuCN

RATE PHP 7.1 ZH1, (int)"1e308" B# A 1, (HR "1e308"+8 EERXK,

SHEBREEFEREZ, ERTAFEZRRAFEDRARBETAR.

MRARFLAL ozetta IE, RIEMAEEEA T IRRIFFR., ZiE? EAZ P@ssword

s TERnEBRE — TEL/\EFT, SXK/NEXF, BFEMFFE]
ZHBREEGR email, SEHFREREK email ? REEFHEGEMNBZEER?

T2 ER, SRR TR THER I3 S XIEREHEIR,

EATHEHT—T, ERAFIN—EHLURERKMER, EHE email B App BEl°R,
ERZRMEFRER | #12EF CTF player must know how to play CTF with Tablet.
[B & SuperSU ? | FESEE— R, [{REENR 2 F51F |

ZmLitEpEFRfiEm, RERFRRBEEXR, SEAEHAS RO TRATRERE,
MRTEHEEEELABIGUE, ELAERET . ERARKA..... . EREBIFT,
—grsneREgtnEreter. (B — RGN = -)

\XD-HI]I]

https://github.com/blackb6a/blackb6a-ctf-2023-challenges/tree/main/20-isekai-tensei-hakka
https://www.php.net/ChangeLog-7.php#7.1.0
https://3v4l.org/GnuCN

MRIELEES BIE, EREMAEE, | R ETEARIBLILME,

(AT, IFAKHE EFERAKEH, | HERHEE,

EARRMEDLFET EOIMNER, BREXHUIET,

ZEREEABEN, [EW, fHESIR2EXFRE BLIETHMEET S,

M4h 2 fREBKKRIEE ? BRIRIFUUERIEE ... R EHEZEBXEARBA T,
...... EREEME BE—EADRKERTF T 2R EEAREEG, ETTUESRE,
EHITHE, SENEEARAEHBEXE, EFATH, /MEREERZRARIRIKREK]
MEREFABRET, VRBEEE L. LA, MR, KEHE)
MAEREREBENLIRERETH L. (BE? BRIMMUMAMIEKZEESE,
THEER — ACEEH ! BA=HREEE +1 E +10, EFMBELT, FHMBELT,
N RERR 2 M LM FRE& M i, SRBRTIERMEARABEIE,
BLOREINEREERRY, ERHRASHETEEREALE.,
AR UERE HEE) <option value="1"> B 1t 1308
AEBEZ 1e308 MAE 2e308 5& 13092 B & 1+1+1+1 =4 < 10 HEI1EH,
HREZEHHHEKAE 21024 KL 1.79769e+308 , BAEE A INF EHE,
ARBRENEFRFHRTABGER, BRETREEAELEFELELEE. ...
BEREMBRERAEMNSERRE T, BUKEFRKE I F—ERZFRE,

kBT IRECHEME hE. BH. BiE. £mE82E 65536, Alfa#H. 510, 28
= 8 . xRN, B, YIbh. BIHth 2 65536, Bk — i ILFLREERE 215,
¥EETREAERMSEE, DEEIAESIRELAHRAAHRARE?)

[{RR Stable Diffusion i, IEEAFE, |58 2 B RIETRIE{RENE £ S %2 EHEE
FERIEFFERMEEEREEM ? ERER B,

HEBIMHEMETH AR B CHE H, HET T PR REM G R EPKE,
ERFEBEMEREE, MEREMRES ~ G EENMERTFIEXRZ2 X EYER)
HERNT SB>FIARNBERTZEHIE,

MR WE A bbs.2233.idv.iw | [RZRFBRERW, AT, MEREEMR
...... BHREENEEERIANNA, H2RE TR RKEMKESEZRM, ERAFHERE,
BE| T —EWUTEEFKEINEY, 2 EVANEREFRB?

MR YE A bbs.2233.idv.iw | BAFSE, HDEREN/\miE/KREREREBK.
EREEBRSMERITT —TH g9 T. BEEEE 410028475 | BB & 2041,
EHEA ! hELEFH 110 FELFHA 106, BHLFA 494, &£ LFH 207, f8&E L FH 112
CEAEFA 111 EMLEH 229, 65536 FEREE ? EERELFAE,
FEEEARIRE RABMEIEZ 65536, HE HP LR 45 F 3 5251267,
FRMAE 1 HFAF] 201 $hE, BEF—EFFA T 200 £, BREHFR/NRIZERA
ABTHREHP, EETHEE. FRRAMER THESI €42 £60307t.
AHEFRRRIENIIEREER, MEBRMAERMAXERERE 2

TG T, MAREEHR R2EXEL TEA,

BERBEREKBZHEFEE —T. EXRE[/BEHT, BERRHEEARBHERHOELFAO
BRAA—BIRBEF KT, ERIRNEESE 15 TRk T —ERY, EEE,
ST —NHEZRERAEREERET.. RRERRMAR T —RiZ HPEERF LR
REEE, IREFH HP 2 5277481/5277481 , FEZAES NI T, X ? |
EREEEDRREREE, BEAEEHAEENE TR REMEREEZW test,

M RZ 215 5%, 8k 1, HP 45/45, 21552 R EEMHK 1 F1 HP 45 2EELTE.. ...

A[]-HDI/ 31

Credits and Afterwords

e [ditor-in-chief: GonyK

e Article contributors:

a1668k apple botton cire meat pop
Eason ensy Gon¥K grhkm
harrier hoifanrd hollow Fimmy
Mystiz Ozetla Stdor streamline
vikychoi V0w wwkenwong

e Design: apple

e Cover art: Generated with Stable Diffusion by apple. Firebird Chan character by
Starry Miracle.

e Article review (Knowledge-wise):
apple cire meat pop grhkm hoifanrd
Ozelta wwkenwong

If you have any comments on the newsletter, please don’t hesitate to drop a direct message
through Facebook, X (Formerly known as Twitter), E-mail, or even Discord - let us know
what’s on your mind!

As you dive into the articles, I hope you feel the passion and dedication that went into each

piece. Thank you once again to our incredible writers and reviewers. Your contributions
are deeply valued, and hope you enjoyed these articles.

Connect Us

ﬁ blackb6a Q blackb6a team@héa.black o blackb6a

32

r e
) »--r T
i sl

i
LY
t
i
: -t
-

	Table of Contents
	Foreword
	Knowledge Sharing
	The journey of my first cybersecurity certificate
	Reflections on “Reflections on Trusting Trust”
	The Power of QR code recovery
	Bauhinia CTF 2023 Image Factory
	TetCTF 2024 LordGPT: Microsoft Azure nOAuth Bug
	Binary Similarity: Overview of BinDiff
	How LLL works (simply)
	Traffic Routing in Kubernetes
	Flipper Zero 推坑簡介之 NFC
	Threats Analysis for Running Out of Paper in Public Toilets
	Introduction to Generative Model
	Interacting Breakpoints with OWASP ZAP API
	APT techniques studying: DLL sideloading
	PuTTY’s P521 vulnerability, and a LLL primer
	小妹火山遊🌋
	Onsite Hardware Problem in SECCON 2023 Finals
	SECCON Trip in Japan

	Ad-Hoc
	Isekai Tensei Hakka Vol 1 Issue 1
	Isekai Tensei Hakka Vol 1 Issue 2

	Credits and Afterwords

