3V Bauhinia Newsletter

Vol. 02 ¢ March 2025

VY
=

Discovering DOMPurify CVE

Tcache Poisoning

High Rank Elliptic Curves

Function Interposition for Dynamic Analysis

Neural NetworkzéAdversa'ﬁé‘r“Attacks
...and more

ong ‘Kong

Table of Contents

Table of Contents 1
Foreword 2
Ad-Hoc
Puzzle — Mystiz 3
Isekai Tensei Hakka Vol 1 Issue 3 — Ozetia 4
Isekai Tensei Hakka Vol 1 Issue 4 — Ozetta 6
Knowledge
How to hack a signage using a $9 remote - a1668k 8
Al “Artist” (1): Text-to-image — apple 10
Al “Artist” (2): Prompts & Inpainting - apple 12
APT techniques studying - botton 14
Introduction to Coppersmith's Method (simply) — Eason 16
Analysis of Web Applications From a Noob's Perspective — ensy 18
FHEFE Heap pwn: Tcache Poisoning — gldanoob 20
A Primer on Searching for High Rank Elliptic Curves — grikm 22
IDA Tips 1: Custom Structures — harrier 26
Technical Minecraft - Chunk Loading I — hoifanrd 28
Decrypting UNIX-based OpenSSL TLS Traffic — vikychoi 30
Introduction to Adversarial Attacks: Fast-Gradient Sign Method — Vow 32
Events
SINCON 2024 Recollections - Gon 7K 34
Credits and Afterwords 36

Foreword

Welcome to the second public edition of our newsletter, presented by Black Bauhinia
(blackb6a) team members. Black Bauhinia is a Capture-the-Flag team from Hong Kong
founded in 2019 and have been actively participating in CTF games since then. Whether
you're an industry expert or a student, we hope this newsletter will inspire you about
different aspects of CTF and the cybersecurity landscape.

What is CTF?

Capture The Flag (CTF) is a popular type of cybersecurity competition that challenges
participants to solve various puzzles and problems to capture hidden "flags". Often, players
are required to break a system and workaround the security measures to get the flags.

CTFs are designed to simulate real-world cybersecurity scenarios, providing a platform for
learning and demonstrating skills in a fun, competitive and legally safe environment.

About Black Bauhinia

Black Bauhinia is a CTF team from Hong Kong dedicated to advancing cybersecurity
knowledge and skills. Our mission is to foster a community of learners and professionals
who are passionate about cybersecurity and eager to tackle new challenges.

@ Black Bauhinia

Also known as
+ BlackBauhinia
* blackbba

Website: https://b6a black
Twitter: blackbGa
Sign in to join the team.

Ateam based in Hong Kong
(We are NOT affiliated with any associations.)

Participated in CTF events

2025 2024 2023 2022 2021 2020 2019

Overall rating place: 54 with 417.670 pts in 2024

Country place: 1

Our team also co-organized the BSidesHK 2025 CTF. We hope it would be the perfect
chance to encourage newcomers to dive into the world of CTFs and have fun. We extend
our heartfelt gratitude to BSidesHK 2025’s organizer, participants, and supporters who
make this possible. Join us in our journey, and let's capture the flag together!

deadmwwwl}% on %W?W’W

AB-HOC ’ 3

EHRELERR

Isekai Tensei Hakka

g% A1 2 Ll Black Bauhinia CTF Team & BEA RS/ R IE KHEFE 215 | anR{RAE
(or FEAE) fRHEIFFEAR/N GRS, & Send 1BTC & @ozetta, {REIE BB AT AEHIEM,

%—4% — WOG FFABattle - {J& g
B2EEM:

https://github.com/blackb6a/blackb6a-ctf-2023-challenges/tree/main/20-isekai-tensei-hakka

F=F — (LERRKIERER

ERFIHACTERMLIBEMEER, REFRRT —THEEE,

[PRE T FE (3000t & A IR MR ERFIRMAL, [HEEE &R FE5000]
EARANEL T —EHES, RMMABE ?HREEREKZZHEFES—F,
RN ERARGHHEIR T HERNAR M REER AR ERTEARELE
MREEZEIIEBCMEEHEZGR, EEHLEHERE?

THEAEELZL CAPTCHA MZ LB F, ARMUBIFEMARSREZEL,
LRAFESHEA, BERERIRAESESFRMNERMEFEET, REBEE!
BRT—T, XEHEGEREEH T, SXHAEE,
BREAKBZFHEHE M EZ R (ETRT2FRNOEEME), BNREHET,
FRE 3000 KoEMETEE, EREHRE, —BEHAIFMIEFNELEET,
EmEthEEHARBENES IR E—XhFARMEER#EESXKEAUMEER,
CREM 2 1R EHER. [BRER IT—5XESEF, XEBEK, HEE. |
MREBTEERE? M EREMRE, BT —EAUREENE TR,
EEEAEEREBHENE T, RETENET TREMER,

[E4Rk 202, hp 5277481, MIRINEE 65535, [EiEHEE 65535, 1R E65535... |
REE—EUWUMTFEFA top), HFEME—LERA, ENEFLR B M,

[A EUTFEF Al ? REREIRIBIRIFE AR 2 |

rMrEFSllE, SEEHERE R RRERFH @ begugu: MIREFR.

REHEREREIRER, MR R ESIEEXITEIF AL, ST ERES 2
EREESZSEE—EERS, B TMEEEEREEEEN, REERAEET T,
¥ 2T crassywosneteNracerphp FIRIATE, £5 40 17, I EZENT :
$money=(int) trim(addslashes ($_POST["money"])) ;
ZIEEHARIER. ... BREEMESAIABDEEESEM L,

Z % 3B Sublime Text $ikMi+#EH A LIFI AR update wog player {5,

\\D-HI]E

https://github.com/blackb6a/blackb6a-ctf-2023-challenges/tree/main/20-isekai-tensei-hakka

Hh class/wog act pk.php i pk setup HEAR, BREBXEHE?
MRERERTEPKEEEME 7 R EBEEMR, HETE BRETHAEE]

FER RHEEHIR T blobcatthinkingglare: IR IE R iR, B2 NSBISMIESHE]
EE=HFZ—TEERRASEHAA, Bk pk_setup B7EFE 28 £ 35 1TIHE,
E S POST["pk money"] BRBERNEEHT. REZHERAHZEE,
ZEREEIVTEEREGIREAENEE BNE N THERTARHASE,

LR INRBMPKEYEE, PKEEEEE M 1000 = 100000 2, RIEEFE AL PK,
REBMESE 44 TTHITLUUTIES A : $DB_site->query ("update wog player set
p_pk s=".$ POST["pk setup"].",p pk money=".Smoney." where
p_id=".Suser id.""); M $ POST["pk setup"] FiEKAI LI,
EERBFRAEF BE-BF ISR SQL T AREREFHFEMMBAL,
HFEREE| PKEREHE, 1B pk_setup RIZEH 0 2K 0, p_money=9e99,
HiLEXARE(RIER 1000, ARR THEIRH, RifiER: [ERERN
HBEEECHARKE BREBREREMT 4294967295, FEM
BEREEFEEFHS THAHMELER THFHEA TOPHWE—LT,
BIrEEREOREKERW. REERTES. ...
HERAMEREZIMERIARE T — MR HPERIERF minm!

MMERGK, RIFHWEERJERE ? IERT R UEE 5825 [B0 B |

TELEME, RKEREAMR T, [FFERIBRTRMRE

REBRFERMEE GREAZEEAEHMNEE. T REENRRERES
AR ETHINEFTE R e A= i
|
ATEMELGHREIR Bam, EILZMEIPKEREFREKXRR.,

R A ERPKER EMA 22 lFmi ? BEAR AT LIS R, KARtLATLUE. ...
FITHIIE pk_setup MIEER 0 3Rk 0,d body id=118, ZRIRMETE,
EEREREAGKRE, #EREENA 2 RE TEAZ RIS EEE,
BREEBEA—R BRERESTERRT ! 2THE.... . [REHEFI......
.
...... FRREIEE B ERRA THESMNER.... REREENEERFTEESH L,
BALZEREESTEMBAESZH, BREENNPC ERBETIIRMAK,

mER T — TR BITEIEREEHGRMAERISE, 2ERKS. PK WINMSER.
SIERRI hp h AT LISk KR— B, 2 B E X EFIPKERERE—&F 1EHME 0 sk
0,p win=9e99,p pk win=9e99,p cho win=9e99,p 1v=9e99,p exp=9e99
,p_nextexp=1,p hp=9e99,p hpmax=9e99,p bank=9e99

NE{E B FEERITHFRE, REER, AEMNSARARNT —T. BERAEEEE:
515, Z4R. hp. BEBHE 4294967295, PK WIN HIE 2147483647,

TRRDM 2 mEN 2 IR 2 EREHER., ZEE TR, BHORMERR. |
NEEEIBMREEITE ? Rz TiREE, HEE T ch_id=30, 5Hi]

WAL 0,p vit=9e99,p luck=9e99,p au=9e99,p be=9e99,ch id=30
HEEEBEEARNE TR THEERNL ? 12T REFREEA L R]
EFBARBEERT XKEBEE, RLDBEXEENHIEERES A 2 RIERENEBZE M.

A[]-H[II/

~

"
= P
q @

d B
iy

@
~Cp

R a X

Isekai Tensei Hakka

B % A5 2 Ll Black Bauhinia CTF Team /& fE# HIE%/VaR IE R¥EFR B 15 | INR(REE
(or FEE48) fRHEIRTEA/NR S, 55 Send 1BTC & @ozetta, {REIE R B oI REARIEHM,

F—4& — WOG FFA Battle SE= iR
B2EEH:

https://github.com/blackb6a/blackb6a-ctf-2023-challenges/tree/main/20-isekai-tensei-hakka

EmE — RITHE

BFRETBESHHEEERFNEE, WFhEZ—TEHREE,
BEAEEER, MRRBEFERNERASZSAEREENEMHEZE.,
MEIFREIRFESESARZRER XFA2BERE BEE?(EEER B)
EHEEREM hpEEHE, RREMNBEAAB?HRAFEH LAEEETEREERIE,
BRI —MbHERERNERIE, EMEEEMESERIEE,
DEHEMRNEN, —EASEEN—SEEYE, —@EEBEN—GEFAE,
ERGHEEN—BRR—EFE, —RRAKXR—EEFLE, —BRKKR—EERE,
m—ERENEEEZE—BATELRS, MESKEZELSZE-EEEN,
EERIRMESEZEMBE. BEME TEEREMNIE?]

Hfidh:THHE Omakase? IIEERIE:[H | EETE G, OKIF? |
ERTT OK MFE %, [EEUFRERBYT . ETTRNER, BKNRLEET,
BEZRITMEARARBRHENRIVEER, RIFH L ERERIE 2
EHEMZERAETEEE > IR BHGWEW ? TBMHSME? IR MRt E,
[MRNEE, RLERSFERW, RITEBEANIAARN L A0+ = (ER%E 2 |
ERMER R, BEAMT AT 0EEREIME p_bank=9¢99 KIKTE,
[REERESFRT ? IR ERKEEFEEE —ESER . TMLEZHESN ? |

(59 | 4E{%5 | HRIREHEER. ... 1FDEMER TIEEM, EFaht.,)
[EERERMEHRMETEREY, BRIEEERT —BENG, HBLERET,

HUBEm2 R, BEHE IEEE, RESEHREERE RAET AT EMLS.,
EERESHHSHBEHRONERN, KRB %ITEE—NERABZH,
Bl B AR RHEE 65535 ROR, M 5 IBER T LIRIRMS R HEIE — EREE,
rmans, EEEHWIER, Bi—2rz2emen s A NIIEEE =3,
Kkt OSEEH — %S, (I 2B ozetta), RIS

BEET 8% HERIMALE24258 Dr. ROT10, [, Bk EE
s, BAERE EREERRME - B SENES?

\\D-HI]E

https://github.com/blackb6a/blackb6a-ctf-2023-challenges/tree/main/20-isekai-tensei-hakka

[EzRcpunhed S massttmmtedniil Jihi3
= A E Rt — 2, TEHEME Rollback 154
2 ERR M EL TRERMIEEEMEERSR % RS 3
74 RIB ozettal, — R FIHFERSFREFHENE FERMUES,
MRtk 2 AR50 2 | HEFHER, BFEFE: [{RIBERSHMW 2 FAAITH, |
MrEaR RS TEET TS 2 & ErEE . NG
...... BA— BB, ke St ek T, (R0 B RS 5E 4 B (R EITA5 2, Skiphi |
BEfE R EIE S ERERE TR, BB FHHI2RARBIFIR, 65535 BIEME BT L,
AzRaw— ez, I
e
]
ERZRFEEHBT —EIRT HATET -TFT2H 55T KA

B2 EEEM R TR BM, R B A LB T, [E7— 3% 3E Dr. ROT10]
]
HEER IS TRRAMELE Rotten, ARFEEHFNAEAEE. [ERRE 10
BErfh i PKHKE, R RMIEH THES [HTFEBPK 3 PKIEHTRHS IEKR
WFEFIFE PKERE 0, p 1v=10 FRIEE DHZEHHEE 10 HkH B RFENIEY, S8
BSBEE—RESAIBMZBIET . lozetta EF T I5F] ! ! HPRIT 4294967295 1 F
St 10 #AZ 1195 k. BEREFE22 T HEIR: T E SR FIER2RT
— 8, RS —EZREHT —EB¥K, Dr. ROT10 {E IR IFEmR ISR,
rans ozetta, fR3%1E5E 5 2 | NI
...... BA—Fn gk, A 7 HCTE, I
I - -~ = =5 - [3 S AR R |

AT T BEHRE Skip HEZ S =, FLL 65535 Bl ERBH RIS
MREBRERAELIR, BHARRTHNE 7 EEHRR 70 MRTZEHIETRE,
MRAERERHBEEESRERET 2 IR ZEBERRMIANEE ., FRFEE,
FRHEESEM, FAHIE Dr. ROT10 WERERMIREE . HiE PKEREMER K
0,p_sat name=(SELECT p password FROM wog player WHERE
p_name='Rotten'), I THERRMEL THES [EXEERRA)I......
FRRBESTIRESIIREE, BREXERBERERITEERRIE ? HEREBE, R
EiE 'Rotten' SR 0x526F7474656E BLAFT. KB T — T, BREIRE. BH
EEMRBABETIEE Network RE, BIRRMHET

You can't specify target table 'wog_player' for update in FROM clause

AFE RFHEM—E Subquery T:0,p sat name=(SELECT p FROM (SELECT

p password p FROM wog player WHERE p name=0x526F7474656E) x)
HERBEHNBEANRILREBBERT pvkg{Lido} . RAZEEZ L HE,
KAEZBEAT Rotten MIRSE, BAEMIIREHLE T . IINEGNNEE

H B A ozetta BIIRSE, FEMIRE L EERFMRRERE . BBREEDIRE DD,
T & B 5% 14248 Rotten MIMRIEMZIBIE T MR, [MIBRAL NN MEFESERL !

A[]-Hl]l/

ey

Recently, I have been working on a research project related to signage
hacking. One of the most interesting findings I found is about the Infrared
(IR) sensor. I discovered that I can nearly fully control all the Android
signages using an IR transmitter, given that we found the correct sets of
codes and the signage contains an IR sensor.

If you read Bryon’s “Flipper Zero #3if# /1 in public volume 1, he said he
can control the projector using the infrared module inside Flipper Zero.
I also used Flipper Zero to do the attack. Besides that, an even more

interesting thing is that I bought a $9 universal remote in Apliu Street, Almost all the signages had an
infrared signage near the
bottom right of the screen. If
you saw there is a light there,
most likely is there.

and it works too UwU...

So... How IR remote control works? How can we control these devices
using IR remote control?

Code of Ethics: Again, it is very likely that you can control most of the Android signages using an IR
transmitter, e.g. Flipper Zero, or a $9 universal remote control. So please don’t attack those signages
you saw in the public after reading this article :D I am not responsible for that :D

Before we dig into how to control devices containing IR receivers using IR
‘ remote control, let’s just talk about how IR remote control works first.

From the name of the remote controller, an IR remote control works by using
/f the remote is infrared light to send signals to a device (X bilge). However, as there are
functioning properly, you millions of infrared lights everywhere, IR receivers will continuously receive
will see a lightifyoutryto 4] those IR signals when it is on. Therefore, IR receivers will need a way to
capture it using a digital filter out the correct IR signal and perform actions based on the IR signal.

There are various types of IR protocols out there, but the most common ones are NEC Remote
Protocol and RC5 Remote Protocol. And for all the Android signages I tested, they used NEC Remote
protocol. Therefore, let’s take NEC as an example.

Like most of wireless signals, the NEC code uses a carrier frequency of 38KHz to avoid interference.
The actual data is modulated using 38KHz (26.3us) modulating frequency. When a button on the remote
is pressed, the IR Blaster sends a stream of data to the receiver. And the receiver will process it to
retrieve the address and command.

38Khz Carrier

B

ﬁ ﬁ |||||||||||||

Left: illustrate the modulating frequency, Right: the real IR signal captured under oscilloscope

D e S

Reference: https://circuitdigest.com/microcontroller-projects/build-your-own-ir-remote-decoder-using-tsop-
and-pic-microcontroller

KNOWLEDGE SHARING

https://circuitdigest.com/microcontroller-projects/build-your-own-ir-remote-decoder-using-tsop-and-pic-microcontroller
https://circuitdigest.com/microcontroller-projects/build-your-own-ir-remote-decoder-using-tsop-and-pic-microcontroller

The NEC format contains multiple sections, including:

- A g msleading pulse burst (/ carrier waveform)

- A 4.5ms space (/ OFF waveform)

- The 8-bit address for the receiving device

- The 8-bitlogical inverse of the address

- The 8-bit command

- The 8-bitlogical inverse of the command

- Afinal 562.5 ps pulse burst to signify the end of the message transmission.

The following example illustrates the format of an NEC IR transmission frame, for an address of @eh
(00000000b) and a command of ADh (10101101b).

ooo0o00000 *+ ¢+ 1+ 1 14 1 1 1 101 1010101 001010

LSB
- | |LSB ILSB ILSB |
TS le—pld— Address —Ple— Address ——pl¢—— Command —Pe¢— Command —»
4 5ms: | (Logical Inverse) : : (Legical Inverse) :
I~ 27ms o 27ms ':
) 67.5ms o

Reference: https://techdocs.altium.com/display/FPGA/NEC+Infrared+Transmission+Protocol

With the knowledge of how IR remote works, if we know the address
and command of a specific brand of IR receiver, we can try to send an
IR signal following the format of that protocol. Tools like Flipper Zero’s
Infrared module can do the job by writing IR signal files specifying the
address and the command. You can also search for these IR signal files
from databases like Flipper-IRDB, or the “Universal Remote” function

in Flipper Zero.

. . . . wrote for controlling the
Also, most of the IR receiver uses the same address for all the actions angroja signages.

they have. Therefore, we can try to brute-force the value of the
command after we found a correct set of address and command. In the research project, I found that

all of the Android signages use the address of @0h or 4eh. And I can perform nearly all the actions, like
open settings, go to the home screen, or even turn off the signage, by brute-forcing the value of the
command.

If you try to buy a universal remote in Apliu Street, they typically come with a database of codes for
various TV brands and models. And you may be able to find a correct set of codes that can control the
devices using the search function on the universal remote. (I used a $9 universal remote xDD)

With the knowledge of these, you can now control almost all the devices comes with an IR sensor :D
If you want to know more about what else I have found during this research project, maybe this is the
topic of my next article :D

KNOWLEDGE SHARING

https://techdocs.altium.com/display/FPGA/NEC+Infrared+Transmission+Protocol

Al “Artist” (1): Text-to-image

apple

Al Image Generation is slowly adopting to

different industries, especially advertisement.

For HongKongers, the most notable
one must be the # 1> & B! ads

from the government as it is ...

literally everywhere.

-

The technology is quite promising that - it
already causing illustrators losing jobs to Al,
serious concerns among human artists and
the anti-Al atmosphere among them. Well as
a tech person, we always trying on new stuffs
(not new anyway)... ride on it and see if it

works. Let’s get our hands dirty.
Warming up your GPU

There are many services for image
generation, and recently you can just use
ChatGPT or Bing to generate image. [don’t
like online services, so instead a local version
of Stable Diffusion (SD) would be used. The
minimum requirement is a (reasonably)

modern GPU with at least 4GB VRAM.

There are few Ul for controlling SD, the
popular choices would be Allll and
ComfyUI. Personally, I found ComfyUI is
better... but I would recommend a third Ul:

Acly/krita-ai-diffusion which is a plugin for

Krita, an opensource painting program.

Follow the documentation and you can setup

it to use your local GPU or remote GPU%

! Retrieved from www.sehk.gov.hk
2] am using a “Custom Server” setup connecting to my remote GPU server. Works

flawlessly, and my laptop won’t get hot. Using software from Internet at your own

risk and I am not responsible for whatever problem you got into. I got it VM isolated.

KNOWLEDGE SHARING

Hello World: Greeting to Krita Al

After setting up, you can try “Hello World”

for text-to-image (T2I), locally! Start by

opening a 512*768px canvas and get started:

@ Model selection: choose art styles (model
checkpoint, LoRAs and style prompt).
We chose the default “Comic & Anime”.

@ Settings: Setup additional art styles, etc.

@ Prompt: Type image description as detail
as possible for text-to-image generation®

@ Preview: Generated images would be
shown here. Number of images depends

on the image size and how powerful your
GPU is. Whocanbuy nmre-some 46967
Art style: Model Checkpoints
There are two main image generation base

models, namely Stable Diffusion 1.5 (SD1.5)
and Stable Diffusion XL (SDXL)%.

SD1.5 SDXL

Older model Newer model
Trained on 512px Trained on 1024px
Run faster Run slower

Let’s add a model: AnythingV5 (SD1.5) from
CivitAl, which was used for Cover of Vol.2

3 Prompt used: Computer terminal with text “Hello World”

4 Pony is also SDXL based, and it have its own selection of prompt keywords.

Recently something called Flux.1 (F.1) appeared too, model file already ~15GB...

https://github.com/AUTOMATIC1111/stable-diffusion-webui
https://github.com/comfyanonymous/ComfyUI
https://github.com/Acly/krita-ai-diffusion
https://www.interstice.cloud/plugin
https://civitai.com/models/9409?modelVersionId=30163

Image generation (T2I) process of “cat”, step 1,4, 6, 8 A

VA ¢y
N — N
—r 1/‘&%‘

;‘.1§>-ZL-f

The model checkpoint® plays a major role for
the art style and understanding of prompt.

Check footnote® for installation instructions.

Apparently, compared to
previous default “Comic &
Anime” model, AnythingV5
have better idea of what a

computer terminal is!

During the training stage, all images were
cropped to a square with 512 / 1024 pixels
width and labeled with text description. Then,
the T2I process starts with a random noise
image from a random seed’, then mutate the
image repeatedly for ~20 steps® to follow the
prompt. This process is called denoise.
That’s why we set our canvas size to 512px as

it is what the neural network trained on.
Positive and Negative Prompts

Enter the description for desired image to the
(positive) prompt input box (3), as detail as

possible, in English of course. For example:

good quality, solo, girl, yellow hair,
heterochromia, left red eye, right orange eye,
white dress, paw pose, sitting on bed

in bedroom, morning, blue sky, stars, moon
shining

You can see the images are nice as instructed
by “good quality” prompt, but the model is
not following the prompt well — most of the

images got the eyes color wrong, some hair

* Checkpoint (ckpt): the model file storing the tensors value (*.safetensors)

¢ Download and place it to the ComfyUI “models/checkpoints” folder. Then, open
the Settings dialog 2 and add a Style Preset. Choose “AnythingXL_v50” (the
filename) for Model Checkpoint and click OK.

color mixed with purple, and where the hell
the cat ears come from? None of the image

appears to be in morning too.

The cat ears might appear in our image due
to tagging mistake — some “paw pose” images
in the training data did not have “cat ears” as
its description, or there is not enough paw
pose images without cat ears. We can use

negative prompt to get rid of cat ears and

other undesired features, for example:

cat ears, nsfw, lowres, worst quality, low
quality, blurry, high contrast, bad 3d, jpeg
artifacts, text, signature, watermark

You can Google for more positive/negative
prompts. Model understanding on your

prompt depends on the training data quality.
But | want morning with moon and stars!

So, SD can’t follow our prompts correctly,
especially when your taste is unique. The
easiest way is to Gacha (draw) more images
and try your luck. However, “morning” is
conflicting with “moon”, so it won’t work. Fix
it by increasing the strength’ of certain words

in our prompt, simply add some brackets:

- (((((morning, blue sky))))) *°
- (morning, blue sky:1.5)

Can it replace human?

Is SD just copy-pasting from others drawing?
Can SD generate new idea? Well, I believe
human involvement is still the key for Al
artworks. See you in the next time and ofcuz

let me know if you have any ideas.

7 Seed: the seed for random latent noise image to start with, same seed same image.
8 Steps: how many iterations to mutate the image incrementally, even 1 step works.
? Strength (weight): the importance of the keyword, typically +-1.5

105 pair of brackets so strength is 1.1°5, same as (prompt keywords:1.61051)

KNOWLEDGE SHARING

11

Al “Artist” (2): Prompts & Inpainting

apple

In the last article we had some basic idea on
SD - which are just common sense right?

Let’s dive into more in depth topics:

What was it trained on

. In the training stage, the SD model takes the

(& i
.3

A (D Search result of “Chen” on Danboor

images and text descriptions pairs to find
relationship between them - word/phase are

associated with some image features.

Where are those images sourced from? Well,
it is mostly scraped (pirated) from Internet
along with text descriptions. Part of the
images are pirated from Booru image boards,
which are image sharing & tagging site run
by hobbyists. It was
established in 2005 —
way before Al images

&
b— o] .‘e‘
is a thing and become

12

A

a valuable source for Al engineers thanks to
its quality tagging system (was tagged by a

bunch of unpaid humans!)

Example @human art! of Chen* on Danbooru:

Artist: konna reshiki, Copyright: touhou, Character:
chen

General Tags: 1girl, solo, animal ear piercing,
animal ears, cat ears, hat, earrings, single earring,
jewelry, mob cap, brown eyes, brown hair, short hair,
bow, bowtie, white bow, white bowtie, petticoat,
frills, red skirt, puffy long sleeves, puffy sleeves,
long sleeves, skirt, skirt set, vest, red vest, flat
chest, hands wup, sweat, speech bubble, simple
background, white background

Meta Tags: highres, translation request

Rating: General (Safe for work), Score: 7 (quality)
(composition), (face), (body), (action),
(background/layout)

That’s detailed right? Now you know how the
model define quality, SFW/NSFW, and what

to write for your prompt as the anime style

models were trained with these tags®.

! Art by #2541 L & (@konna_reshiki), retrieved from danbooru:7722676
2 This good girl is called Chen (#%) from Touhou project. The original character

KNOWLEDGE SHARING

How detail should my prompt be?

Can we generate our purrfect Chen-chan?

Left ®: The model got few common features

of Chen from all the images that contains the
tag “chen”, therefore you can see the
distinctive cat ear, green hat, and the brown
hair. However, the clothes, hair style, even
the eye colors are completely different as it
varies between images in the training data /
have more association to other tags (this

allows us to put Chen in other clothes!)

Right @: Simply putting all the tags of 2 as
prompt and we got our Chen with similar
outfit as the images (D and @. But it couldn’t
get the white bowtie... probably due to most
of the images with similar tags had yellow
bowtie, as the original character design was
yellow (see search result). Therefore, keep
in mind that tags / phrases will interact with
each other in some (unexpected) way, and

SD will generate image that it sees fits.

Overall, @ is better than 3 by making Chen-
chan looks like Chen. So, try to describe your
image in tags and natural language in detail,

can ask ChatGPT to generate prompt too!

design was dated back to 2000 era so there are lots of fan arts!

% In Krita Al, you can enable auto-complete for tags in Settings -> Interface.

Embeddings (Textual Inversion)

Sometimes you might find it hard to describe
complex concepts that wasn’t tagged in the
model, and embeddings* could solve this.
You can find them from e.g. CivitAl and use

them as prompt keywords. EasyNegativeV?2

and badhandv4 are commonly used to get rid

of unwanted image features and Al mistakes.

As any prompt keywords, it would affect

(5 (embedding:badhandv4:0.1) A Image @ zoomed A

unexpected image features, e.g. image 5 the
hat color is different, speech bubble got a red

outline etc. See footnote® for usage on Krita.
Gaining more control: Regional Prompt
When you want to have better control on the

layout and detail - regional prompt can helps.

Click the add region button 55 twice, then
start drawing on the new region and type the
prompt for the region. Prompt will only

effect on the area that’s not transparent.

As shown, we have successfully put

two conflicting objects on the sky!
Partial Gacha: Inpainting (Generative Fill)

Say we are satisfied with image @), but we just
don’t like the face. We can re-generate partial
area with inpainting. Adobe is selling this as

“Generative Fill” and the ads are all around...

Simply select the area with any selection tool

(e.g. rect or circle select tool BEl®). Then,

* Embeddings (Textual Inversion) does not change the model itself; it just adds

additional “keywords” and associate it to the image features in model (thus its name)

the Generate button will turn into

which only the selected area will be generated.

A Image @, selected area A ® Fill with original prompt A (© Fill with prompt

for inpainting with random seed “yellow hair”

The context area (i.e. pixels around the
selected area) is also sent to the model to
generate image that fit seamlessly, as
demonstrated by ©. Context can be changed
with the “Generate (Custom)” mode in the

dropdown menu of the Generate button.

The dropdown menu also contains
other features, such as “Expand” for

Outpainting. Others menu item are

self-descriptive.

Masterpiece face (ZXEEE)

average of images from the whole Internet,
lossy compressed into a 4GB model file.
With text prompt only, the variation of our
art is limited to what is tagged in the model ...
and the gaussian random noise image. When
the prompt is lacking creativity, produced

images all becomes “masterpieces”. We will

try more controlling methods next time,

which hopefully make us better Al “artists”?

5 Copy the files to ComfyUl “/models/embeddings”, then add the following
negative prompt to the Krita setting, e.g.: “(embedding:EasyNegativeV2:0.5)"

KNOWLEDGE SHARING 13

14

APT techniques studying

botton

In this chapter, | will talk a about a very common techniques that Microsoft used for detecting
malicious software, Antimalware Scan Interface (AMSI) and Event Tracing for Windows (ETW).
and how the attackers techniques to bypass those detecting.

Antimalware Scan Interface (AMSI)

The Windows Antimalware Scan Interface (AMSI) is a versatile interface standard that allows
security applications and services to integrate with any antimalware product that's present on a
machine. AMSI provides enhanced malware protection for your end-users and their data,
applications, and workloads. For example, it will detect the malware or malicious files by searching
for any common strings or signature hex used such as “AMSI", "ANTIVIRUS", or
"X50!P%@AP[4\PZX54(P~)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*",

PowerShell VBScript Other application Other application
MsMpEng.exe
I I I (Windows Defender Service)

AMSI.h + AMSI.lib + AMSI.d1l

Win32 APl layer AmsiScanBuffer ()
AmsiScanString()

MpEngine.dll
(Defender Scan Engine)

MpSvc.dll
(Defender RPC Server)

Amsi.h + Amsi.dll Provider Class
IAntimalware: :Scan() registration

COM APl layer

Antivirus Windows Defender Provider Class Third-party
provider layer IAntimalwareProvider: :Scan() antivirus provider
Remote Procedure Call (RPC)

©2022 TREND MICRO

Windows AMSI architecture |
https://www.trendmicro.com/en_us/research/22/l/detecting-windows-amsi-

bypass-techniques.html

Event Tracing for Windows (ETW)

Event Tracing for Windows (ETW) is a mechanism commonly used for debugging and security
logging. Logging is leveraged by user-mode and kernel-mode applications. ETW is implemented in
the Windows operating system and provides developers a fast, reliable, and versatile set of event
tracing features. The security software can register the ETW provider to trace the function behavior
of a running process.

KNOWLEDGE SHARING

https://www.trendmicro.com/en_us/research/22/l/detecting-windows-amsi-bypass-techniques.html
https://www.trendmicro.com/en_us/research/22/l/detecting-windows-amsi-bypass-techniques.html

ETW Architecture

LL Controller A

Enable/Disable

A

Session Control

Control

Data Flow

L LR L L L L L L LI L L L LI I Y Ll

Events

Windows Kernel

Event Tracing Sessions

Events

.
u ot
.

Provider A

Provider B Provider C

+

,.-"‘ Logged Events

o

E Consumer

| ETW Architecture | https://ithelp.ithome.com.tw/articles/10279093

Bypass AMSI and ETW
Both AMSI and ETW functions are the code block inside the dll file

e AMSI: AmsiscanBuffer() in amsi.dll

e ETW: Etweventwrite iN System.Management.Automation.dll

Therefore, we can patch the code block of those dll to bypass them.

Let's say a very rough and simple patching solution:

1. We can use cetprocaddress() to retrieve the dil memory address.

2. Then use virtualrrotect() to modify the memory region to be read, write, and executable.

3. Finally, patch the targeted function and make it unable to be functional as intended.

However, the above method is very easy to be detected, so we can reference the techniques on
https://github.com/S3cur3Th1sShit/Amsi-Bypass-Powershell

Those are the various techniques that the attackers commonly use for bypass AMSI and ETW such
as setting Hardware break point or using CLR Hooking.

Untitled

KNOWLEDGE SHARING

15

https://ithelp.ithome.com.tw/articles/10279093
https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell

16

Introduction to Coppersmith's Method (simply)

Eason

In my previous article "How LLL works (simply)”, we know about how to find solution
from lattice matrix by applying LLL. This time, we would learn about how to solve modular
polynomial equations with the Coppersmith’s method.

There are different types of polynomials. In this article, we look at the easy case of
univariate monic polynomials. Let N be an integer and f(z) = z¢ + Zf;ol a;zr" he a monic
polynomial of degree d.

Build a matrix

Normally, if we wanna solve a polynomial mod N, we need to factor N. Most of the time,
N factors into large primes and is thus hard to factor. Coppersmith’s method helps us to
find all integer solution z, to the equation f(z,) =0 (mod N).

The main idea of Coppersmith’s method is to construct a polynomial /(z) over the
integers with larger coefficients such that #(z,) = 0 holds over the integers, not just mod
N. To understand it, consider the lattice generated by the rows of B:

‘N -
NX
NX?

NXd—l
lay a1 X a,X? .. ay XTU X9

Each row in the matrix corresponds to the coefficients of a polynomial. For exam-
ple, the first row (N,0,...,0) corresponds to the polynomial h,(X) = N, the second row
corresponds to i, (X) = XN, etc. The last row corresponds to the polynomial f(X) =
ag +a; X + - +a, 1 X1+ X4 The key is to notice that each row is 0 modulo N when
evaluated at z,, - for example, hy(z,) = N =0 (mod N) and f(x,) = 0 (mod N) by defi-
nition.

Since this matrix is lower-triangular, the determinant of B is the product of diagonals:

det B = Nix“="
and we want to find the upper bound of X and vector b, :

by] < 2" (det L)= = 23 Natr X

N

w1 is needed. Simplifying

In order to satisfy the Howgrave-Graham bounds, [b,] <
the algebra, we obtain an upper bound for X:
X < C(d)NT@D = X

which we can treat it as X ~ N/4°, In other words, if the original root z, of f satisfies
|zy] < X, then we can solve the equation f(X) = 0 (mod N) by running LLL on B and

solving the equation over the integers.
Implementation

Let’s say we are given N = 667(= 23 - 29) with unknown factorization, and f(z) = 2% +
62 + 352 (mod N). Suppose that we know the solution is less than X = 20. We construct

KNOWLEDGE SHARING

the lattice B like this:

N
NX [667 0 o]
B— =|0 20667 0
NXd-1 352 6-20 202

ag X o ay XU Xd

After applying LLL on this matrix, we will get the reduced basis B’:

B = | 352 120 400

167 12260 —3600

—315 120 400]

We can get the first row and interpret it as the coefficients of the polynomial h(Xz)
(since the matrix is scaled by X), then rescale it back to h(x) like this:

4 12
h(20z) = 40022 + 120z — 315 = h(z) = 2%23:2 + 2—0033 — 315 = 22 + 62 — 315
Finally, we can solve for the roots of h(x) over the integers with the quadratic formula
or Newton’s method and find that the solution z, = 15. Note that we solve the equation over
the integers, not over modulo N, and without knowing factorisation of V.
If we try different values of X, you can find that if X is too small, there is no solution.

If X is larger than one of the factors of IV, the first row will be moved to the second row:

37 84 98 1
X=17,B=|-315 42 49 = zy=—-3+ 5@'\/38 (not integers)
131 2695 —2303
667 0 0
X =24 B = |-315 144 576 = First row gives h(20x) = 667 =+ 0.
204 15000 —4032
Improvements

The upper bound X ~ N/4* are quite tight, so Coppersmith came up with 2 improvements
on the matrix B to increase the bound X:

1. Using z-shifts (of function f) zf(x), 22 f(x), -, 2% f(x).
2. Increase the power of N, as for any 0 < k < h:

F(z)=0 (mod N) < F*(z)=CN* < N"'*Fkz)=0 (mod N")

After the improvements, the upper bound of X is improved to about N/ > N1/4*,

...Can we NOT build a matrix every time?

In Sage, there is a function called small_roots (), it uses Coppersmith’s method which you
can just build a polynomial then call the function, but it can only solve univariate polyno-
mial. Therefore, you can use some tools and codes for multivariable polynomials, such as
defund/coppersmith and kionactf/coppersmith on GitHub. They are useful and effective
for general modular polynomial solving problems. And it is also a good example to learn
coding in Sage. Still, knowing how to build a matrix and how linear algebra works first is
always the best way to flexibly deal with different kind of lattice-based problems.

KNOWLEDGE SHARING

17

https://doc.sagemath.org/html/en/reference/polynomial_rings/sage/rings/polynomial/polynomial_modn_dense_ntl.html
https://github.com/defund/coppersmith
https://github.com/kionactf/coppersmith

18

Analysis of Web Applications From a Noob's Perspective

During the first few days of this year, while | was working on the front-end of one of my
projects, when suddenly, | noticed that the rendered page was malformed for no reason at
all. As a CTF player-withust-4-yearof-experienee, | had flashbacks from doing XSS
challenges and immediately identified it as a potential bug. After thoroughly checking my
code, | determined that it had to be the front-end framework’s problem, which is how |
reported my first security vulnerability.

A few more bugs and CVEs later, | found out that code used in production was actually way
more insecure than | thought it was, such that even a CTF newbie can discover 3 XSS bugs
in a well-known JavaScript front end framework. This motivated me to put my CTF skills into
practice, and what better way to challenge myself, than to go for one of the hardest targets,

“the big end boss of XSS” according to popular youtuber Live Overflow, DOMPurify.

Of course, a secondary school student with one year of CTF experience can’t simply find a
bypass in DOMPUurify, it's basically the most well-maintained defence mechanism against
XSS! That'’s also what | thought, but since | had the Chinese New Year holidays ahead of
me, | decided to give it a try, treating it as a learning opportunity.

During the “challenge” | gave myself, | found a few resources particularly useful, these
include “Exploring the DOMPurify library: Bypasses and Fixes By Kevin Mizu”, the Dom
Explorer from YesWeHack, and a mXSS cheat sheet from Sonar Research.

If you’ve ever heard of the resources listed above, you will know that they all are in some
way or another related to mutation XSS. Why mutation XSS you may ask? Because | looked
at the recent DOMPurify bypasses and spotted a common theme: all of them are mutation
XSS bypasses paired with comments.

To illustrate, here is the DOMPurify 3.0.8 bypasses found by Kevin Mizu:

<svg><annotation-xml><foreignobject><style><!--</style><p
id="-->">

The simple explanation is that due to namespace confusion with the <svg> and
<foreignobject> tags, the first parsing treats <! - - as text, while the second parsing will
treat the same expression as a comment. This effectively means that DOMPurify will fail to
recognise the expression as a comment, but the browser will, meaning there is a mismatch
in interpretation, and that allows for exploits like XSS to occur. (The browser treats
</style><p id=" as a comment, while DOMPurify does not recognise it as a comment,
due to the parsing order.

What | have found is that since these types of mXSS are quite hard to patch,
cure53(DOMPurify’s maintainers) decided to straight up prohibit ending comment tags -->
from appearing in attributes. However, the team did not invalidate attributes with the >
character. Why would it need to be removed? Because HTML comments can actually
appear in multiple forms, and while the most common form you see looks like <! --. .. -->,

KNOWLEDGE SHARING

the expression <! ... >is also surprisingly a valid comment, thanks to the incorrectly
opened comment exception documented in the WHATWG HTML specification.

Does this mean that if you replace <! -- with < and --> with > you can bypass DOMPurify?
Well, not exactly. This is because for the mXSS payloads to work, after the comment start
tag, you also have to first end the style namespace with </style>. Notice anything? It
contains the > character! This means that the comment will end here instead of in the
attribute of <p id=">...">, which is not ideal, since it makes the whole payload useless.

What we need to do is somehow remove </style> when rendering... After taking a deep,
deep look at the code, | realised that there is a function right at the end which removes any
expressions in the form of $S{ . . . } which makes the code safe for template engines.
However, this action is quite dangerous as it may conflict with the sanitized material. Taking
advantage of this, | used this feature to remove the annoying </style>, and successfully
bypassed DOMPurify version 3.2.3.

After 3 days of non-stop code auditing, “faking” bypasses, and questioning my sanity, | finally
did it, | bypassed DOMPurify. Throughout the journey | learned way more than | initially
expected, including mXSS techniques and how HTML tokenization worked, so the time
spent was really worth it. Words cannot describe how thankful | am to the entire Black
Bauhinia team, as they were the ones who got me interested in CTFs and helped me
massively along the way.

|. DOM Purify o
<st3|e.><!—- <Istyle> pid="=>...
7.[3rows e’ XSS!

gstyley<i-—</styler <pi 4@'"

es
Tew utrgmoved!

<stale.)<! style) A<P id =" >®
= xss/

(Please note that the actual PoC uses a different starting payload from the one listed here,
as | tried to simplify it for explanation purposes.)
The full PoC and rest of the details are at https://ensy.zip/posts/dompurify-323-bypass/.

KNOWLEDGE SHARING

19

20

Pwning Mg CTF ABRARMIMG L =B -
T & B D N L3R pwn o AT S IR T
A vsCTF MY Domain Expansion e
i BITREHE heap pwn #EEL#E HLIE
tcache poisoning » 75 |2 M N\ ¥
pwning BEELER o DUN G E AR D
stack pwn °

{;‘Ejjﬁ @Bﬁ : Menu
. Create
EA IDA G0
& H binary G Ll: Delete
B X 5 note NS

Enter your choice: 3
Enter an index: ©
Data: nah i'd win

app * EEMIIRE G
FHZ malloc [A]
free HEXHBI

B S R WEE
binary BEA TR - #F5CEEE note
R > ARERENE free WE{E note 2 5 {#
pointer » FLHETT heap overflow [F] use
after free BEJRIR o ME—E “bug” (HATRIRHH
260 WEES - BAH note MLEERBEMRE » M
X run EBEFZR AT DURB—IX

I VOUTL [2. JOU

DOMAIN EXPANSION

Enter an index: @
Expanded size: 1024

T4 YRR AT UG FH i 2% TE B FR it B (E shell
We ? MREFR & 72 ~ heap allocator BE#E
St o R malloc BIER#H heap chunks
A [A] B> BIRF free I B 531% A > WA
chunks BEFHIZITEZ » itk allocator LA
—fi linked list (WefE1H71% tcache bin) M
i W uk

cabirs A fd B

0x30 [2]: ©x55555555b2a0 —» 0x55555555b2d0 <«— 0

(rZEMEME & IEAC R & B pointer A null ©)
BRI malloc WERHE > 40SRIEME bin B
KN free chunk > f/ allocator it & B R4
WeAE list BEBE chunk © WefE{% glibe HA—{#
optimization fi Pwndbg M vis #§% (£
%1% vis_heap_chunks) A] DU EIEHE
tcache chunk 1B -

0x0000000000000031
0x04d1627¢5abt11b2
0x0000000000000000
0x0000000000000031
0x0udlo27{53bulle} B
0x0000000000000000
Ox0000000000020d11

0x000000000000000€

Ox000000055555555
0x0000000000000000
0x0000000000000000

\(NDWLEDEE SHARING

B & chunk A #§% chunk B B pointer (4%
fd) > HERRETFMR chunk A A8 o BEEI4IRE
WA AE 1 ZMEK memory VR EHN 7T > THER
gt AT fake {# allocator » sEEHE R #E
chunk {GFuiEZ BRI 7T -

arge

tcachebins
0x30 [2]: 0x5

fastbins

‘:B

EfE challenge I idea st 4| 71551515 5
BWE buffer overflow &4 free chunks

B FD pointer » &% list 55 — & entry #iE
MR 7T - 23 % A allocator malloc %
MR » 58— malloc W chunk 3 &80
B AT AP target M o

MR AT A arbitrary write » HHH{AIEAGE
GOT overwrite * 2 program &k
system HREERE libe function FLEHEVE ?
fimt 5 o

RELRO: Full RELRO

LIBC #ff GOT ?

% glibc 2.34 ZHfi » HEM__free_hook ([
__malloc_hook) I libc variable » F (%5
user set —{# function {E% free() M
handler o EFMifS 2] abritrary write BERE
2% AL free_hook WA EE&f)
system() * 2% free(buffer) WS call
system(buffer) » EHIKHGAME shell i o {H
%S IRFMIEE libe version {4 2.35 M » BRIk
__free_hook fHH MY A LIS FM overwrite
e ?

HE GOT (Global Offset Table) WEr£MF Iz
executable [f] shared libraries AB#E

M o EFM run {#@ binary > i libc load A
memory MiRf - SHRIEZEMEES —18 GOT B
look up HC.M functions ° Glibc version <
2.39 BEEE f# libc ELF (W& HIE(E ELF)

fd'
55b2a0 —» Ox7ffff7ela080 (*ABSx@got.plt)

https://vsctf.storage.googleapis.com/uploads/b08fe006b1640d615d119e1ad3aad1a4943dae96334cf1bd5d4452593ac04f11/domain-expansion.zip

Hi%&H Partial RELRO - Fr AR AT LUF%E
{8l GOT Hijacking IBEWE#3 o

—fE & H 5 A exploit B libc GOT entry w4k
_ strlen_avx2 (Bf& libc AR strlen
) - milg Pwndbg fE$T got -p libc FLA]
DUREEMEA &

[ex78f9d781a088] _dl_find_dso_for_object@GLIBC_PRIVATE — 0x78f9d

[ex78f9d781a890] *ABS*+8xa88d0 — Bx78f9d779f0UE (__strncpy_avx2)
[0x78f9d781a098] *ABS*+0xaB6a@ — BOx78f9d779d7ed (__strlen_avx2)

Hs puts(*s) 73 int
implementation {4 _DEFUN(_puts_r, (ptr, s),
& call 3|

strlen(*s) » M {
i _strienana T e
KA system Z1&A] ;

DI " /bin/sh" 5 R e
M&—1& chunk A struct sdiov dowl21:

i > P read note > Blf& print i chunk th

1 > i puts("/bin/sh") WHRFEEE call
system("/bin/sh") > BI&BH{E shell HilE

i o

_CONST char = s)

size_t ¢ = strlen (s);

{E{%%E FFH tcache poisoning ENEE fake
chunk E##ME_ strlen_avx2 [E » I
chunk M BK pointer &% null > &R
libc F#| __strlen_avx2 I F—{E GOT
Entry (+0x8) WHFHEr segfault o —{EfEI 7T
%EB9KF chunk 8HE =18 GOT entry Z Hil{L
B (-ox18) milefEf B~ —E Entry (-
ox10) i i e & libc % dereference

IBE > MHRLIERR 24 OR exploit run 82 /i
segfault °

LHI details

AHLCAEOR] RE B R 55— R B E f£d
pointer HAIEZEA chunk B o [E X1
glibc —fil44 % Safe-Linking BECREEMEH]

&% P &R AR pointer » L % pointer FTTEME
address (chunk A B E > BIEAE heap
address) > H P' = P @ (L >> 12) #i&fk
encrypt WEMEHT pointer * T P o A5 MR
chunk A AZZBE value o ASRNeE & <4
%17 ASLR bypass B heap exploit FEFE{E
F| - A& attacker 17—{# heap address &
decrypt & pointer °

MR —1# special case A% > IR
leak 2IWEfl pointer tHWRIEES -] LUEIEFH

struct _reent *ptr _/

{EZ bypass heap I ASLR © & tcache bin
B entry © 5% fd &45 null:

0x30 [1]: 0x55555555b2a0 <«— 0

& P &% encrypt WEME null pointer » [Po
=0 @ (L > 12) = L >> 12 ° I o 5tk
encrypt 8% decrypt £ fd pointer I
key Wi o (W& heap address Rk
JEMWE 12 fi#l bits WE[F) ZAFZEINEME key - TR
HF# % read i free chunk H# o

T R SRR I B4 R 22 overwrite libe GOT »
libc WE ASLR X Bht£HS A2 2 Fomt A 55—y
unsorted bin I free list » [EME&5HE 2
circular doubly linked list * [i5EE# & %
main_arena (libc #EHEH—{# struct) o

S RFE A E BRI — ®4# chunk HE
A unsorted bin, F leak 1Ef# fd

pointer * Bl main_arena Wef# libc

address ° {H&{# chunk % A £ unsorted
bin ARIEGEH: —FE chunk B4k (HEE
A tcache bin) * “ARERER] A& heap & TH
MéfE chunk o

Mk ?

Solution RILAHFEHEUE - LU & —1H
guideline:

1. #—{# 32 bytes [{—ffX (> 1032
bytes) B notes » F#Z 1 note LA
consolidation * delete W 5 MR
notes

2. Domain expansion &5l note
53 I F™E notes B leak heap [F]
libc address

3. #¥ tcachebin {&%= > allocate WifiEl 32
bytes I notes > REEIFHA
tcachebin

4. &K tcachebin & EM{#E chunk > %
(B fd 517 LIBC GOT A
_dl_find_dso_for_object M &
(VIEt#E 5 E & encrypt f# pointer)

5. 1822 unsorted bin ’ %A% allocate i
R LIPEH libe GOT - #%
__strlen_avx2 % system

6. 15"/bin/sh" 8 A [—{# note » F
read B » E3ZJE IR shell

KNOWLEDGE SHARINI?/

21

https://writeup.gldanoob.dev/domain_expansion

22

A Primer on Searching for High Rank Elliptic Curves

grhkm

On August 29", Noam Elkies and Zev Klagsbrun announced [4] the discovery of an elliptic curve of
rank (at least) 29* over the rational numbers. It has Weierstrass equation:

E :y? + 2y = 2® — 0x10ce554d1283aeafe731dd2285b1cbb543c3ed4853127£6894e9x
+ 0x1b206£3de15feb61e310e519ad8a7a827ccab8b96d2601d74570c8b6c488211c097e59cfac359

This increments the previous record of a rank 28 curve, also found by the two. In this article I hope
to explain this result means, why it is significant, and the general idea behind the search.

1 Rankof £/Q

To begin, we must first understand what the rank of an elliptic curve is. Consider the set of rational
points (z,y) € Q2 satisfying E : y? = 2® + z. It is easy to find one such point: (0,0), but other than that
it is unclear whether there are any other points. Indeed, it can be proven that this curve has finitely
many points: E(Q) is finite. By contrast, consider the curve y? = x* — 16z + 16. It is not difficult to
find many points on this curve: (+4, +4), (+4, F4), (0, £4), (0, —1), etc. One may again wonder if there
are infinitely many such rational points. In this case, it can be proven that there are infinitely many
points. They can be generated via the following SageMath code:

sage: E = EllipticCurve([-16, 16])

....: G = E.gen(0)

....: print (*[(G * k).xy() for k in (1..8)1)

0, -4) (4, -4) (-4, 4) (8, 20) (1, 1) (24, -116) (-20/9, -172/27) (84/25, 52/125)

To differentiate between these curves, we can use the fundamental theorem of finitely generated
abelian group and Mordell-Weil theorem (1922), which are stated below:

Theorem 1.1: Fundamental Theorem of Finitely Generated Abelian Group

Let G be a f.g. abelian group. Then, there exists » € N such that G = 7" & G,,,,, where G,,,.,
are the elements of G with finite order and is finite. The value r is called the rank of G, denoted
rk(G).

Theorem 1.2: Mordell-Weil Theorem

Let E/Q be an elliptic curve. Then E(Q), also called the Mordell-Weil group, is finitely gener-
ated.

These two theorems combined tell us that E(Q) as an abelian group has structure 7" @ T for some
finite group 7. Just to be clear, the r here indicates the “dimension” of (the torsion-free part of) F(Q).
For example, when r = 0, then E(Q) = T is a finite group, while when r > 0, the set of rational points
on E is finite. This is one of our goals from the start, but we can extract more information from r.
More specifically, when » > 0, there exists a basis {G;,G,, -, G, }, each of infinite order, such that
every point in P € E(Q) can be uniquely written as P = P’ + " __ [¢;]G, for some integers ¢; € Z and
a point of finite order P’.

Moreover, Mazur’s theorem (1978) shows that 7' only has a finite number of choices (in particu-
lar, |T| < 16), and is efficiently computable. Hence to understand the structure of an elliptic curve
over the rationals, we want to determine the rank r. More generally, we would like to understand the
distribution of r and how it relates to other invariants.

Now we understand Elkies and Klagsbrun’s latest result: they discovered a curve with rank r > 29*,
improving on the previous record of » > 28!*. They explicitly found 29 linearly independent points on
the curve given at the start.

*All rank inequalities » > r in this article can be replaced hy r = r(, under the assumption of GRH when r, > 2.

KNOWLEDGE SHARING

2 Specialising fibrations

Next, I want to attempt to explain the high level ideas behind the method of discovering such a curve,
as clearly it is not obtained by testing coefficients one by one. Elkies and Klagsbrun’s strategy consists
of two parts: (1) finding an e//iptic fibration £/0(1) with large Mordell-Weil rank r, and
(2) sieving for good values of ¢ for which the specialisation E, has large rank.

First off, don’t be scared of the scary terms like c//iptic [ibration and elliptic surface! A simple mental
model for them is just a normal elliptic curve y? = 23 + az + b, but with coefficients a, b in the function
field Q(t), or for our purpose even a,b € Q[t] holds'. Recall from my isogeny article that the notation
E/K just means an elliptic curve E defined over K, as a subset of K2.

For the remainder of this article, we will use the elliptic surface &, : y? = 2% + (+'2 — 26t° — 343).
Notice that it is an equation of 3 variables, which suggests that this is a surface. However, the correct
way to view this is that ¢ is a parametrising variable, and &, is a parametrised family of elliptic curves'.

Akey property of &, is that it has Mordell-Weil rank at least 4. Indeed, itis proven in [5, Theorem 5.8]
that the following four points on &, are linearly independent as points over Q(t):

343

196
(3610 + 344¢* + ST 2715 4+ 387t° + 1145¢% — t—g)

—t6 +49 —11¢5 + 343
t2 ’ t3

J

(8,t6—13),<),(t6+7,t9+11t3),

How does this help us find high rank elliptic curves defined over Q? The hope now is that by spe-
cialising ¢ to a rational number ¢, i.e. by evaluating the equation and points at ¢ = ¢,, we can obtain an
elliptic curve E, /Q which automatically has four rational points on it, meaning that if the other points
behaves “randomly” and we are able to find more linearly independent rational points, then £, will
have a higher rank than usual. Of course, we are relying on the assumption that the four points above
remain linearly independent over Q once evaluated at ¢ = ¢,. Fortunately, Silverman proved that this
is usually true:

Theorem 2.1: Silverman’s Specialisation Theorem [/, Theorem 11.4]

Let € be an elliptic surface defined over the function field Q(¢). Then the specialisation map

Oy

. BQ) = By
(,y) = (x(to), y(to))

is well-defined and injective for all but finitely many points ¢, € Q.

Let’s do an example with our elliptic surface &,. By direct computation, we see that for ¢, = 3,9, 20,
we get By : y? = 23+512144, B, : 1% = 23+282415718672 and Ey : y? = 23+4095998335999657 respec-
tively, and for the first case, the 4 points provided specialise to (8, 716), (—680/9, —7676/27), (736, 19980)
and (302857/9,166669613/27). In Section 4, we shall verify that in all cases, the specialised points are
indeed linearly independent, so right off the start, we already have three curves with rank at least 4.
However, it is even better than that, as we are able to find more linearly independent points. In fact,
the naive method of enumerating integers x and search points on F(Z) yields linearly independent
points. In the end, we obtain that rk(E;) > 4, rk(Ey) > 7 and rk(E,,) > 8, and we will prove equality
in Section 5.

sage: points = [...]

....: for x in range(2722):

Lt if E.is_x_coord(x):

o008 P = E.1lift_x(x)

50008 if check(E, points + [P]):
50008 points.append (P)

"But Q[¢] is a ring, so we can’t define a variety over it without scheme theory.
fwith some singular cubic curves here and there, but I digress.

KNOWLEDGE SHARING

23

24

Going back to Elkies and Klagsbrun’s result, they did precisely our method, but on a much larger
scale, and by being much smarter. As described in |2, p. 24] and in detail in [3, p. 10], to find a suitable
elliptic fibration, they enumerated the 167889 elliptic fibrations (that’s 167889 parametrised elliptic
curve family!) on the K3 surface with Néron-Severi group of rank 20 and discriminant —163, words
we don’t need to understand. Among those, they found a rank-17 fibration. However, they did not
compute an explicit model for the fibration, so we are unable to play around with it ourselves. The
only step that remains now is to find good specialisation values t. For my elliptic fibration, I was able
to find the rank-8 specialisation by luck and (initially) a 2-hour bruteforce, but that doesn’t scale well
at all. Instead, a smarter idea based on the BSD conjecture is used.

3 BSD conjecture and high rank elliptic curves

Being one of the millenium problems, the Birch and Swinnerton-Dyer (BSD) conjecture is one of the
most famous open problems in number theory, providing deep insights into the structure of elliptic
curves. Specifically, the conjecture links the rank r of an elliptic curve E/K over a number field K to
the behavior of arithmetic invariants associated with primes p. One formulation of the conjecture is
given below:

Conjecture 3.1: Birch & Swinnerton-Dyer Conjecture | |

Let E/K be an elliptic curve of rank r. Then, IL<z5 ﬁpﬂ ~ C(log B)", where N, := p+1—|E(F)|
and C is a constant dependent on E.

4This definition is true at primes with good reduction, and I do not want to talk about the other case.

To break this conjecture down even further, we can take logarithms to see that Zp g log(N,/p) ~
log C' +rloglog B. This gives us a somewhat heuristic method to check whether a curve has high rank.
First, fix a bound B, say 2'6. Given an elliptic curve E, we can reduce it at each (good) prime p,
compute |E(F)| and hence N, and evaluate the sum > e log(N, /p). Ifitis large compared to other

similar curves®, then we know that it has high rank! For example, the two curves below have similar
size, yet one has rank 11 and one has rank 3. The E.pari_curve().ellrank()[:2] returns (unconditionally)
upper and lower bounds for the curve, while E.np(p) computes the quantity N, defined above.

sage: E = EllipticCurve(QQ, [0, -54141938135, 0, 771820685537294757888, 0])
sage: E.pari_curve().ellrank()[:2]

[11, 11]

sage: sum(n(log(E.Np(p) / p)) for p in prime_range(2, 2x*18))
15.7842585917576

sage: E = EllipticCurve(QQ, [0, -54141938088, 0, 771820685537294757888, 0])
sage: E.pari_curve().ellrank() [:2]

=, 21

sage: sum(n(log(E.Np(p) / p)) for p in prime_range(2, 2x*18))
1.67922917143010

To further speedup the compultation, instead of testing the specialisations E, one by one and com-
puting each N,, slowly, Nagao realised that if the coefficients of the defining equation of £/Q(t) are
all polynomials in ¢, then |E,(F,)| only depends on ¢ (mod p). As a result, it suffices to precompute
log(N,,/p) and store > P ™ Blog B values, and computing the sum > Np/p takes O (B/log B)
time. There are further tricks such as sieving documented i [4], low-level optimisations and (ab)using
integer arithmetic, but go ask @happypotato about that.

As a remark, there have been other types of sums (“score functions”) used in place of S(B) =
> Np/p (which is due to Mestre). In [6], Nagao used S(B) = > pep(=N, +2)/(p+1—N,) and
S(B)=%,.5—N, log p/p to find a curve of rank at least 20.

SFor “similar enough” curves, the constant C will be approximately the same

KNOWLEDGE SHARING

4

Verifying linear independence

I realised that this article is getting too long, so I will put this on my blog soon. Stay tuned :)

5

Upper bound on rk(F)

I realised that this article is getting too long, so I will put this on my blog soon. Stay tuned :)

6

Appendix

In Section 2, we went from a K3 surface (not shown) to an elliptic surface of rank 4, and finally to an
elliptic curve of rank 8. However, there is a much easier way to find elliptic curves of high rank. As a
motivating example, consider three arbitrary points P, = (x1,y,), P, = (75,95), P; = (75,y3) € Q2. By
solving simultaneous equations y? = x? + a,x? + a,z; + a4 for coefficients a,, a4, ag, we automatically
obtain an elliptic curve of at least rank 3 — precisely P,, P,, P;. To generalise this method, we can use
the fact that nine points determine a cubic to compute a cubic through nine points, though one has to
be careful about fixing the origin.

References

[1]

[2]

[3]
[4]
[5]
6]

[7]

B.J. Birch and H. P. F. Swinnerton-Dyer. “Notes on elliptic curves. I1.” In: Fournal fiir die reine und
angewandte Mathematik 1965.218 (1965), pp. 79-108. DOI: doi:10.1515/crll.1965.218.79.

Noam Elkies. “K3 surfaces and elliptic fibrations in number theory”. Banff Workshop 18ws190: Ge-
ometry and Physics of F-theory. 2018.

Noam Elkies. “Three lectures on elliptic surfaces and curves of high rank”. 2007.
Noam Elkies and Zev Klagsbrun. “Z%? in E(Q)". 2024.
Matthijs Meijer. “High rank elliptic surfaces”. In: Rijksuniversiteit Groningen (1999).

Koh-ichi Nagao. “An example of elliptic curve over Q with rank > 20”. In: Proc. Fapan Acad. Ser. A
Math. Sci 69.8 (1993), pp. 201-293.

J.H. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts in Mathematics.
Springer New York, 1994. DOI: https://doi.org/10.1007/978-1-4612-0851-8.

KNOWLEDGE SHARING

25

https://doi.org/doi:10.1515/crll.1965.218.79
https://doi.org/https://doi.org/10.1007/978-1-4612-0851-8

26

IDA Tips 1: Custom Structures

harrier

This is an article series dedicated to tips in reverse engineering in IDA. While IDA has many
issues (mostly our issue of being poor for an IDA Pro license) compared to other
decompilers, e.g. Ghidra and Binary Ninja, up-to-date IDA Free and its IDC support in
recent years offsets its disadvantages and makes it still one of the best tools for reverse
engineering.

Let's start with something basic: custom structures

When doing reverse, you will often encounter structured pointers in all the places,
especially when dealing with binary static compiled with large libraries / binary compiled
from non-C/C++ language:

void _ fastcall sub_74E6@(__int64 al)

Here, a1 is a pointer pointing to some structure. You would want to define a structure for a1
to make it prettier and consistent in the decompiled view, as you won’t want to see a1+16 all
the time. Instead, you would want to link a1+16 which appears in various functions to
some common context, e.g. here, a1 is the bignum structure from OpenSSL.

To do this, you will write the struct in C style. Usually, you can just get this from the repo if
the struct is from an open-source library, say OpenSSL or libcrypto.

typedef struct unsigned long long BN_ULONG;
struct bignum_st {
BN_ULONG *d;
int top;
int dmax;
int neg;
int flags;
}s
typedef struct bignum_st BIGNUM;

In IDA <=8.3, you have to write the struct in a header file, then File > Load file > Parse C
header file (or just Ctrl + Fg). But in IDA >=8.4, you can directly do this in the Local Types
subview, which replaces the previous Structures + Enums + Local Types subview. Just
(Insert / Right Click Add Type), and directly type the struct definition in the “C syntax”. It
is the same as the header file import method, but you don’t have to save a file.

KNOWLEDGE SHARING

o ® O o
BN_POOL_ITEM *tail;

t bignum_pool BN_POOL;
t bignum_st BIGNUM;

struct bignum_ctx_stack
.

0SSL_I'TB. CTX *1ibetx;

ignum_ctx BN_CTX;

ct bignum_ctx_stack BN_STACK;

truct OSSL_LIB_CTX;

After importing the struct, you can then change the type of a1 to BIGNUM*. The function
looks like this after importing the custom structs:

foid _ fastcall BN zero(BIGNUM *al)
{

al->neg =

al->top =
}

More importantly, the struct can be reused and is much more effective on larger functions.
Just by changing the type definition, the functions become much more readable.

__inte4 _ fastcall BN_cmp(__inh64 *al, _ inte4 *a2) __inte4 _ fastcall BN_cmp(BIGNUM *al, BIGNUM *a2)
{ {
int v2; // eax int g; // eax
__inté4 result; // rax int64 result; // rax
// edx p; // edx
[int vs; // rod nt v5; // rod
__intea vé; // rdx __inte4 v6; // rdx
__intea v7; // r8 1; // r8
__intea v8; // rdi _ i // rdi
i st _ // rsi
L/Npex) LI EEx

al && a2) if (al && a2)
{
= *((_DWORD *)al + 4); neg = al->neg;
(v2 == *((_DWORD *)a2 + 4)) if (neg == a2->neg)
s
1
= *((_DWORD *)al + 2); top = al->top;
W5 E=y2i==@i Pt e o V5 =neg == @ ? -1 : 1;
result = v2 !=0 ? -1 : 1; result = neg !'=0 ? -1 : 1;
if (v4 <= *((_DWORD *)a2 + 2)) if (top <= a2->top)
{
if (v4 < *((_DWORD *)a2 + 2)) if (top < a2->top)
{ {

return v5; return v5;

lse

Of course, we can prepare header files for commonly used structures to avoid defining the
same struct over and over again, reusing library signatures in different decompilations.

Maybe we will do it in ctfools!

Next time we will be talking about FLIRT signatures. Stay tuned!

KNOWLEDGE SHARING

27

28

Technical Minecraft - Chunk Loading |

hoifanrd

‘ This series is going to be one of the longest
series ever in Black Bauhinia Newsletter | think,
where this series will be investigating and discussing
the technical side of a popular sandbox game -
Minecraft. Throughout the whole journey, we’ll analyze
the Minecraft source code thoroughly, such that we
can perform different “exploits”. Such survival-
constructible contraptions are very powerful in the
game, which can lead to various game-changing
behaviors. Currently, the goal of this series is to guide
the readers to perform race conditions in Minecraft,
thus allowing to get almost any illegal item and blocks
in survival Minecraft. During the whole journey, we’ll
stick to Minecraft version 1.12 (still a very popular
version!). However, there are lots of prerequisites and
knowledge we need to understand before we can
reach the goal. Therefore, let’s get started!

Chunks

In order manipulate with data stored in Minecraft, let’s
mess with the chunks first! In Minecraft, there are 3
worlds, namely the Overworld, the Nether, and the
End. Each world consists of blocks and entities,
where a 3D Cartesian coordinate system is used to
map the blocks and entities to the world (I call it the
world coordinates, to distinguish with the chunk
coordinates, which will appear
later).Notice that the axes are

swapped in Minecraft, as shown

in the figure at the right. \ /

Entities are mapped using the world coordinates (i.e.
float), where the Y-axis represents the floor level that
the entity is standing on. Blocks are more interesting
because they occupy a whole cube. For example, a
block occupies a cube from vertex (10,63,10) to
(11,64,11), thus its center coordinate is actually
(10.5,63.5,10.5) .1t is rounded down to (10,63,10)
and the game will use this integer block coordinate to
represent instead.

X z

A world has almost infinite length X, Z axes (from
coordinates -30M to +30M), and Y axis from 0 to 255.
Since it’s too big to load and process everything in the
world, only some of the blocks and entities will be
loaded. Following the principle of spatial locality,
similar to page frames in physical memory of a
computer, Minecraft will also load a certain region
around the block/entity wheniitis being accessed, and
that region is called a chunk. A chunk is a cuboid that
contains all the blocks and entities from the vertex
(16m,0,16n) to (16m+ 16,255,16n + 16) of the
world coordinates, where m, n are integers. Therefore,
a chunk has a length/width of 16 blocks, and a height
of 256 blocks. Here, the coordinate (m, n) is then the
chunk coordinate indexing a specific chunk. In
Minecraft, many events will lead an access to a
block/entity, causing the chunk that contains the

KNOWLEDGE SHARING

block/entity to be loaded. When a chunkiis loaded, the
game will then process (i.e. tick) all the blocks and
entities in that chunk. (Not really the case with entities,
and there are some hidden conditions..., to be
explained in the next article probably).

Loading and Unloading with Chunks

Here are the events causing chunks to load or unload:

public boolean isspawnChunk(int x, int z) {

(1) The Overworld has a world
spawn, where chunks that are 8lockpos blockpos = this. getspawnpoint O;
int i = x * 16 + 8 - blockpos.getX();

near the spawn are spawn int j =z % 16+ & - blockpes. getzO:

. return i »>= -128 && i <= 128 && j >= -128 && j <= 128;
chunks (determined by the code | . ’ ’
as shown). Spawn chunks are
loaded at the start of the game,
and will NEVER be unloaded.

A code part determining whether the chunk is spawn
chunk, given the chunk coordinate (m, n)

(2) Any movement event of a player

that involves moving across chunk
boarders, or teleportation (e.g. nether piayer
portal/ender pearl teleportation), also
causes chunks to load or unload. In
game, the render distance d, of a
player is configured (e.g. 12 chunks).
Then the square region of diameter
2d, + 1, centered at the player will be
loaded. We call those chunks are in the render
distance of the player. When a player moves across
chunk boarders or is being teleported, chunks that
should be in the render distance with respect to the
new position of the player, will be loaded; while chunks
that aren’t in any players’ render distance, will be
scheduled to unload.

12 chunks 12 chunks

25 chunks

Example of 12 chunks render distance.
Green is loaded and grey is unloaded.

(3) For some tile entities (i.e. blocks that stores state,
such as hopper, chest and redstone), they will access
their neighbor blocks and call their listener. The
following is an example:

1shat block:
Hopper Ty to access the block that s that block ~__Yes Yes _|Transter e ftem ana
(that has item inside) the hopper is pointing to > chunk loaded? I ‘"V‘*f’mirgf"“ = » caling its listener
VLNu

Load the chunk

The above logic will be executed at
every game tick (i.e. constantly),
and not limited to hopper, powered
redstone component also works.
Therefore, if we put the hopper at
the chunk boarders (pointing to

another chunk), the chunk next to ™2 srevs. et ouricont suers
the hOpper will be loaded, as [ong Note: Hooper must have an item for this to work.
as the chunk containing the hopper is being loaded.

(4) Every 45 seconds, the game will perform an auto-
save, thus schedule to unload all the chunks except
the spawn chunks (1), and chunks around players (2).

Note that chunk loading is instantly loaded when
required, while all chunk unloading is scheduled (i.e.
being unloaded later).

Naive Chunk Loading

We know, players love to make automatic farms in
Minecraft. Thus the problem arises — the farm no
longer works when the chunks are unloaded (e.g. the
player leaves). As a result, keeping chunks loaded is

crucial for a systemic game in Minecraft.

Blue chunks: Source chunks that are loaded.
The hopper in the blue chunk loads the 1! green
chunk, then the hopper in the 1% green chunk loads
the 2" green chunk... and it continues.

Combined with what we have
learnt, it’s easy to think of a naive
way to keep loading chunks:
Create a “hopper chain” from
chunks that are loaded. However,
this requires a stable “source” of
loaded chunks. For example,
spawn chunks can be used as a
source for such hopper chains,
but they are only available in the
Overworld and it’s annoying to
build a chain if the target chunk to

n

Basic Idea

From the code, we may see that only at most 100
chunks will be really unloaded in each tick (to ensure
performance probably, thus the 101t and the chunks
following will be really unloaded in the next tick). Now,
assume we have a chunk X, which we want to prevent
its unloading from autosave, we may first prepare 100
auxiliary chunks Cy, ..., C1go in the same world as X in,
and perform the following as shown in the flowgraph.

Chunks X, Cy,...,

I o ae scheduiedto With this, we may get 3
(autasave tick) unload (by autosave) queStiOnS'
l 1. How can we manipulate

only C3,..., Cygp are
really unioaded due to 100
chunks unloading limit (How?)

nt" tick l

Chunk X is being accessed in
this tick thus it is unscheduled
to unload (How?)

with the iterator of the
droppedChunksSet, so that
the chunks Cy, ..., C19o must
be unloaded first?

be loaded is far away from spawn.
Another option is to use chunks near the player as the
source. For example setting up the chain source to
your base, since you usually use more time to stay in
your base when playing Minecraft.

Ticking in Minecraft

Assume a long chunk loading chain is set up from your
base. Since player movement only unloads the chunks
in the player’s original render distance, even if you
leave your base and the source chunks of the chain are
unloaded, further chunks of the chain will not be
unloaded!

However, don’t forget about the auto unload every 45
seconds. So we are doomed!... Or is it? Let’s see is
there a way to bypass the auto unload. To understand
how unloading works, we need to know about what a
game tick is, which has been mentioned before.

Given Minecraft is a single threaded game, events in
the game are executed sequentially in a (game) tick,
where a ticks last for 0.05s, thus there are 20 ticks in 1
second. Some eventsin a tick are executed in order as
shown, with a lot of details omitted.

Also, function code marked in the red box (i.e. really
unloading the scheduled unload chunks) is shown
below:

// For each world

private final Set<Long- droppedChunksSet = Sets.<Long-newHashSet();
AT

public boolean unloadQueuedChunks() {

if (lthis.droppedChunksSet.isEmpty()) {
Iterator<Long> iterator = this.droppedChunksSet.iterator();
for (int 1 = 0; 1 < 100 &% iterator.hasNext(); iterator.remove()) {
Long olong = iterator.next();
Chunk chunk = (Chunk)this.id2Chunkmap.get (olong);

if (chunk != null & chunk.unloaded) {
'/ perform unload
++1;

1rrd

.

S

always being accessed to

................. l 2. How to make chunk X
unscheduled its unload?

No chunks really need to
n+1"tick | be unloaded since the list
is empty

3. Also, (y, ..., C1po Will be unloaded thus this no

longer works in the next autosave tick. (i.e. we need to

load Cy, ..., C1o9 again before the next autosave tick).

Since there is not enough space left to discuss the

above questions, let’s answer them in the next article

of Technical Minecraft. As a challenge, you may also
try to solve those questions yourself first!

Tick starts

for each world -

|

Really unloads the
chunks in the
droppedChunksSet

!

for each event during:
execution

When accessing
block needed

Load that block
{accessing that chunk)

N .

Remove that chunk
from droppedChunksSet it
that chunk is in the set

(i.e. unschedule unload
because it may be needed
again |ater)

.

I

Auto save in this tick?
‘Yes == Put almost all
chunks to
droppedChunksSet

Sleep thread till this
tick last for 0.05s

KNOWLEDGE SHARING

29

30

Sharing a Dynamic Analysis Technique: Function Interposition

Motivation

Once upon a time, there was a Linux application that needed to be reverse engineered. The app actively
communicated with a server, pulling instructions to perform actions like updating software versions or
changing configurations. I wanted to see the clear text HTTP traffic to better understand how the client and
server communicated, but I wasn't very skilled at reverse engineering. Luckily, I found a simple method that
even a dummy like me could use to inspect the encrypted HTTPS traffic.

TLDR

So to obtain the SSL master key from any program that uses openssl, all you have to do is to compile the code
at https:/github.com/Lekensteyn/wireshark-notes/blob/master/src/sslkevlog.c and load the compiled library
via LD_PRELOAD. When the target application is executed, the loaded custom library will log the SSL master
key to whatever path defined in SSLKEYLOGFILE. With the master key, you can decrypt the relevant
captured TLS encrypted packets on wireshark.

However, what I found more interesting is the technique used, called Function Interposition. I was surprised
by how versatile this method can be for dynamically analyzing any Linux application. If you are interested in
writing your own code to fit your specific use case, keep reading.

Modus Operandi (How does it work)

The basic principle is simple. When the target binary is executed, a customized library is loaded that hooks
into the OpenSSL library. This is achieved by defining the environment variable LD_PRELOAD, which the
system uses to preload any specified shared libraries during program execution. This allows you to override
or extend any functions loaded by the running program.

To understand how the custom library searches for the target function, we can look at the code in
sslkeylog.c. The function try_lookup_symbol locates and returns the address of the specified function.

static inline void *try_lookup_symbol(const char *sym, int optional)

{
void *func = dlsym(RTLD_NEXT, sym);

return func;

In the function try lookup symbol, a call to dlsym is used to obtain the address of any function based on the
provided function name. dlsym is a function that retrieves the address of a symbol from any loaded dynamic
shared objects. The RTLD NEXT flag allows the use of the real original definition of the function while
embedding only the necessary logic to implement the statistics gathering function.

KNOWLEDGE SHARING

https://github.com/Lekensteyn/wireshark-notes/blob/master/src/sslkeylog.c

Once the address of the target function, such as SSI._SESSION _get_master_Kkey, is found, the function can

be directly invoked.
static void copy_master_secret(const SSL_SESSION *session,

unsigned char *master_key_out, int *keylen_out)
{
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
static size_t (*func)();
if (ifunc){
func = lookup_symbol("SSL_SESSION_get_master_key");
}
*keylen_out = func(session, master_key_out, SSL_MAX_MASTER_KEY_LENGTH);

Now we want to get the code to run at the right time. Since we can override symbols that are
dynamically linked in other shared libraries, we might want to override some commonly used
symbols in those shared libraries by defining functions with the same signatures in our
custom library. In our example, our goal is to get the master key, so it might be a good idea to
fetch the master key whenever there is a new SSL connection. This is exactly what the code
does, as shown below. Note that the function copy master secretis invoked in tap ssl key.

int SSL_connect(SSL *ssl)
{
static int (*func)();
if (Ifunc){
func = lookup_symbol(__func__);
}
SSL_TAP_STATE(state, ssl);

int ret = func(ssl);

tap_ssl_key(ssl, &state);

return ret;

Whenever SSI._connect is called by the target application, the definition in our LD PRELOAD
library will be resolved instead, and it will call the function we wrote, achieving our goal.

Conclusion

By leveraging the technique of Function Interposition, it is able to dynamically analyze the Linux application
and inspect the encrypted HTTPS traffic without needing extensive reverse engineering skills. This also
provides valuable insights into the application's behavior. If you find yourself needing to analyze similar
applications, this straightforward approach could be a powerful tool in your toolkit.

KNOWLEDGE SHARING
31

32

Neural Networks: Foundation

All neural networks are built and connected to-
gether using something called neurons. A single
neuron can take n inputs, and each input is mul-
tiplied by a weight value. Then, all the values
are summed together along with a bias value and ! Ottput
we pass the result through an activation function. s Activation
We can chain many of these neurons together to - Function
form a neural network, but how do these neural
networks learn and output the results we want?

Weights
(2 Wy

Inputs

Neural Networks: Learning

Neural networks “learn” by trying to reduce the amount of errors of a given loss function
by updating the weight and bias values. In other words, the neural network tries to output
the results we want, and we use the loss function as a metric to determine how accurate the
model is. This is known as “Supervised Learning”.

Calculus (M1/M2) students should know that we can sometimes find a function’s local
minima or maxima using the first-derivative test, however this becomes infeasible when
dealing with more complicated functions.

A better method to find a function’s critical point while being computationally cheaper
would be using gradient descent. The idea is that we can just find the slope of a given
point on the function. If the slope is positive, we can shift the point a little bit to the left
by adjusting the weight and bias values, and vice versa for negative. After iterating
this process for a while, we should reach a local minima point, reducing the errors made by
our neural network. Most people describe this process as “pushing a ball down a hill”.

This process can be written as the following equation:

0=0—e(VJ(0))

Where 6 represents the parameters of the neu-
ral network model (weights and biases), and we
take the first derivative of the loss function J to
obtain the gradient, then we multiply it with a
small value € known as the learning rate, which
controls how much we move, and at last we sub-
tract it with our original parameters in order to
move downwards in the loss function. If we use
the function in the image as an illustration and it-
erate this process for a long time, we would reach
and oscillate around the yellow point.

Adversarial Attacks: What is it?

Adversarial attacks is an attack caused by manipulating data in a way such that the
adversarial data is indistinguishable from other untampered data by human observation,
yet it causes an Al model to misclassify the data. These attacks may cause the AT model to
malfunction and make wrong output, which could have disaterous consequences. One such
example would be tricking a self-driving car to suddenly accelerate while driving?.

IMIT Technology Review: Hackers can trick a Tesla into accelerating by 50 miles per hour

KNOWLEDGE SHARING

https://www.technologyreview.com/2020/02/19/868188/hackers-can-trick-a-tesla-into-accelerating-by-50-miles-per-hour/

Adversarial Attacks: Fast Gradient Sign Method (FGSM)

One of the simplest and most famous adversarial attack method is called the Fast Gradi-
ent Sign Method[1]. To understand it, let’s recall how we update the parameters of a neural
network - we calculate the gradient of the loss function, then subtract the gradient from the
parameters to reduce the total error of the model. Now, what happens if we decide to add
the gradient to the parameters? In this case, we are causing the model to converge to a
local maxima, which means increasing the error of our model:

0=0+e(VJ(0))

But our goal here is not to create a poor model, but rather to create an input that
causes the model to perform poorly. To achieve this, we can add the gradient to the input
data x instead of the model parameters (remember, multiplication is commutative):

x =x+¢(VJ(x))

At last, since the precision for most inputs is limited. For example, image pixels are often
represented only using 8 bits and will hence discard information below 1/255, therefore we
would need gradients that are large enough to cause the model to misclassify the input, but
also small enough so that is it not susceptible by human observation. To achieve this, one
method is to only take the sign of the gradients:

x =x+ ¢€-sign(VJ(x))

Now, if we iterate this process for a few rounds, we are now able to modify a normal
input to become an adversarial input.

Adversarial attacks: FGSM Demo

To demonstrate FGSM, we are going to
use it on an image classification model?. ~ original image Adversarialimage
which detects whether an image is Al gen- P 99993654 ve 3.3990195€.06 , 00011351952 ve 0.99938663
erated or not. .

The image classification model takes in
256x256 images, passes the data through
3 convolution layers with MaxPooling Lay-
ers, then the image gets flattened and goes
through a dense layer, and at last it goes
through another dense layer with Softmax
activation function, which gives 2 probabil-
ities, representing how likely the image is
generated by Al

When we pass an Al-generated image through the model, the model predicted the image
is AT with 99.99% probability. However after 3 iterations of FGSM, the model now predicts
the image as not generated by AI with 99.98% probability. Yet, the difference between the
images before and after FGSM is hardly noticable just by looking, with the maximum pixel
value difference being 12 only. The demo code and data is located here?.

References

[1] I. J. Goodfellow, J. Shlens, and C. Szegedy, ”Explaining and Harnessing Adver-
sarial Examples.” arXiv, Mar. 20, 2015. doi: 10.48550/arXiv.1412.6572. Available:
http://arxiv.org/abs/1412.6572. [Accessed: Jun. 24, 2024]

2 ArtifAI Detector: https://github.com/AustinBoyuJiang/ArtifAl
3FGSM Demo: https://github.com/Vyanide/FGSM-B6A-Demo

KNOWLEDGE SHARING

33

https://github.com/AustinBoyuJiang/ArtifAI
https://github.com/Vyanide/FGSM-B6A-Demo
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572

,

éﬁif GonJK

I was in SINCON 2024 to promote the products of
my company. So I was like spending my first 3 days
on booth setup and staying around the booth.

What have I done?

[was given a section to give a talk on any topic. In
the end, I tried to explain to the audience how to
use NIST Cybersecurity Framework (CSF) and
Cyber Defense Matrix (CDM) to check if there are
any missing plates for the defense mechanism.
Although the content is about ransomware and
data leak detection in darkwebh, some audience
foundmy talk interesting when CDM is infused in
my slides.

When I had some spare time not at my booth, I
tried to attend the following workshops:

e Toyota Motor Corporation x Car Security
Quarter (CSQ) — Automotive Security 101

e Introduction to Software Defined Radio
(SDR) Workshop

Car Hacking

At the beginning of the session, we were askedto
install can-utils on our VM. RAMN and CAN Bus.

As the workshop only has 15 RAMN (Resistant
Automotive Miniature Network) prepared and the
workshop was too popular, we had to team up to

try playing with it. I was lucky and my teammate
let me do all the hands-on parts. Either their
environment is not functioning, or they find it
more fun to look at others playing with the
commands.

f"ﬁ;} SINCON 2024 Recollections

Central
Gateway

0BD.Il Port Aftermarket
L 177 3 Devices

SOVES
Tulumalics] { Phones]
SRR IE ¥ Jar v I B 11 270 S0
- BT
sy =
e L I | L] s o=
. PRTEG
&

, ' & :
:
’ " — '
(Boxes A | Ecv ?
— (el :
ECUsSensors S o AR SET—
Commacini by '

. '
H : ' r

(7] mews | Sensor | [Aduator Sensor | | gy |

st P e

Fumware

O e oy

How communication works in a modern vehicle
Source: A classification of attacks to In-Vehicle Components

i

Car systems nowadays make use of many
communication systems that work like neural
networks. The main aim of our workshop is to
hijack the CAN bus so that the components (e.g.
accelerator, brake, turn signals) work in the way
the attacker wishes to.

Of course, there are other communication
protocols. We are targeting the CAN bus this time.

Packet Sniffing

cansniffer is used to track down the data and see
the data received from RAMN. Items highlighted in
red represent an update of value. Note that
cansniffer keeps on updating the console. It is
impossible for users to track the historical record.
12|ms 1D

[
00010 | 024 | @0 00
00011 | 039 | @0 0@
|
|

data ... < can@ # 1=20 h=100 t=500 slots=10 >

00010 | 062 | @B
00099 | 077 | @0 01

00099 | @98 | @0 00 05
00100 | 150 | 01 00 05
00099 | 1A7 | @0 00 05
0 188 | 01 00 05
00098 | 1BB | 00 00 05
00099 | 1D3 | @0 00 05

candump was used to track the data of CAN Bus. By
using the value and mask pair, we can trim the data
and have every instance printed line by line on the
console.

can@,1BB:7BB
can@ 00 00 19 4D 29 4B
can0 @ 19 4E 93
can@ @ 19 4F 05
cand 3B @ 19 50 F
can@ @19 516
o o -

Image of RAMN and its architecture

34 EVENTS

https://ramn.readthedocs.io/en/latest/general.html

Injection

We capture a handbrake signal as follows:

(1716453526.483563) can@ 1D3 [8] ©1 @0 8A 75 4A C9 87
3sWe attempt to send it back using canbus, trying to

pretend as a normal input or even an interception

cansend can@ 1d3#01008A754AC98735Result:
RAMN recognised the handbrake signal and
actually braked the car.

It is also possible to use camplayer to replay a
signal capture without knowing which ID

represents the exact component action (just
packet-by-packet.)

Capture: candump can@ -f ./can@.log
Replay: can player -I ./can@.log -1 i can@=can®

[tried to play with all buttons while capturing the
sequences but I forgot to take a video. In short, you
may see that the headlight turns on itself by
replaying the whole sequence captured from

candump.

Demo and CAN Log

If you want to see the video demo and my CAN bus
capture, please PM me, and I will share it with you.

SDR

The SDR workshop mainly covered the following:

e Wave theory
e Modulation / Demodulation
e GNU Radio hands-on

While we were learning the theories, we had to

install gnuradio at the same time. Speakers also
suggested using OS PENTOO with boot USB. This
allows the hardware to communicate directly and
facilitates the use of HackRF One.

An 1Q file (I/Q data) was provided in the workshop

and we were asked to demodulate it in order to
hear the FM broadcast recorded. The I1Q files work
as a "raw” file of the signal. Within gnuradio, we
are able to create “flowgraphs”, which tells
gnuradio how to process data into a desired
format. Once it is completed, it should look like
this:

You may find it similar to an FM receiver.

Extra

I won the lucky draw from Offensive Security,
which is a box of Lego...

EVENTS
35

https://pentoo.org/

Credits and Afterwords

e [ditor-in-chief: GonyK

e Article contributors:

ar668k apple botton Eason
ensy gldanoob GonTK grhkm
harrier hoifanrd Mpystiz Ozella
vikychoi Vow

e Design: apple
e (over art: GonyK

e Article review (Knowledge-wise):
apple cire meat pop grhkm Ozetla

If you have any comments on the newsletter, please don’t hesitate to drop a direct message
through Facebook, X (Formerly known as Twitter), E-mail, or even Discord - let us know
what’s on your mind!

As you dive into the articles, I hope you feel the passion and dedication that went into each

piece. Thank you once again to our incredible writers and reviewers. Your contributions
are deeply valued, and hope you enjoyed these articles.

Connect Us

ﬂ blackb6a Q blackb6a team@h6a.black o blackb6a

36

Ml |
WA
M

Y
A
N

d
|

QLI

LT

Ll

Bleck

Baeuhinie

https://béa.black

W

	Table of Contents
	Foreword
	Ad-Hoc
	Puzzle
	Isekai Tensei Hakka Vol 1 Issue 3
	Isekai Tensei Hakka Vol 1 Issue 4

	Knowledge Sharing
	How to hack a signage using a $9 remote
	AI “Artist” (1): Text-to-image
	AI “Artist” (2): Prompts & Inpainting
	APT techniques studying
	Introduction to Coppersmith's Method (simply)
	Analysis of Web Applications From a Noob's Perspective
	手把手解 Heap pwn: Tcache Poisoning
	A Primer on Searching for High Rank Elliptic Curves
	IDA Tips 1: Custom Structures
	Technical Minecraft - Chunk Loading I
	Decrypting UNIX-based OpenSSL TLS Traffic
	Introduction to Adversarial Attacks: Fast-Gradient Sign Method

	Events
	SINCON 2024 Recollections

	Credits and Afterwords

