
Contents
Generative AI "Artwork"
Windows AMSI / ETW
Coppersmith's Method
Discovering DOMPurify CVE
Tcache Poisoning
High Rank Elliptic Curves
Function Interposition for Dynamic Analysis
Neural Network Adversarial Attacks
...and more

Vol. 02 • March 2025
Bauhinia Newsletter 02

‭Table of Contents‬

‭Table of Contents‬ ‭1‬

‭Foreword‬ ‭2‬

‭Ad-Hoc‬

‭Puzzle‬‭– Mystiz‬ ‭3‬

‭Isekai Tensei Hakka Vol 1 Issue 3 –‬‭Ozetta‬ ‭4‬

‭Isekai Tensei Hakka Vol 1 Issue 4 –‬‭Ozetta‬ ‭6‬

‭Knowledge‬

‭How to hack a signage using a $9 remote –‬‭a1668k‬ ‭8‬

‭AI “Artist” (1): Text-to-image –‬‭apple‬ ‭10‬

‭AI “Artist” (2): Prompts & Inpainting –‬‭apple‬ ‭12‬

‭APT techniques studying –‬‭botton‬ ‭14‬

‭Introduction to Coppersmith's Method (simply)‬‭– Eason‬ ‭16‬

‭Analysis of Web Applications From a Noob's Perspective‬‭– ensy‬ ‭18‬

‭手把手解‬‭Heap pwn: Tcache Poisoning‬‭– gldanoob‬ ‭20‬

‭A Primer on Searching for High Rank Elliptic Curves‬‭– grhkm‬ ‭22‬

‭IDA Tips 1: Custom Structures‬‭– harrier‬ ‭26‬

‭Technical Minecraft - Chunk Loading I‬‭– hoifanrd‬ ‭28‬

‭Decrypting UNIX-based OpenSSL TLS Traffic‬‭– vikychoi‬ ‭30‬

‭Introduction to Adversarial Attacks: Fast-Gradient Sign Method‬‭– Vow‬ ‭32‬

‭Events‬

‭SINCON 2024 Recollections –‬‭GonJK‬ ‭34‬

‭Credits and Afterwords‬ ‭36‬

1

‭Foreword‬
‭Welcome to the second public edition of our newsletter, presented by Black Bauhinia‬
‭(blackb6a) team members. Black Bauhinia is a Capture-the-Flag team from Hong Kong‬
‭founded in 2019 and have been actively participating in CTF games since then. Whether‬
‭you're an industry expert or a student, we hope this newsletter will inspire you about‬
‭different aspects of CTF and the cybersecurity landscape.‬

‭What is CTF?‬

‭Capture The Flag (CTF) is a popular type of cybersecurity competition that challenges‬
‭participants to solve various puzzles and problems to capture hidden "flags". Often, players‬
‭are required to break a system and workaround the security measures to get the flags.‬

‭CTFs are designed to simulate real-world cybersecurity scenarios, providing a platform for‬
‭learning and demonstrating skills in a fun, competitive and legally safe environment.‬

‭About Black Bauhinia‬

‭Black Bauhinia is a CTF team from Hong Kong dedicated to advancing cybersecurity‬
‭knowledge and skills. Our mission is to foster a community of learners and professionals‬
‭who are passionate about cybersecurity and eager to tackle new challenges.‬

‭Our team also co-organized the BSidesHK 2025 CTF. We hope it would be the perfect‬
‭chance to encourage newcomers to dive into the world of CTFs and have fun. We extend‬
‭our heartfelt gratitude to BSidesHK 2025’s organizer, participants, and supporters who‬
‭make this possible. Join us in our journey, and let's capture the flag together!‬

2

‭🃏 What are the cards facing‬‭d‬‭own‬‭? 🧩‬

‭Pick five cards to form a hand and compete with the team!‬
‭Send a direct message to Mystiz on the cards you picked.‬

3

Puzzle
Mystiz

AD-HOC

異世界轉生黑客

Isekai Tensei Hakka
威噏變久噏？以 Black Bauhinia CTF Team為題材的輕小說正式拖稿登場！如果你想

(or唔想)你出現在本小說中，請 Send 1BTC畀@ozetta，你的意見有可能被接納。

第一卷—WOG FFA Battle

參考資料：

https://github.com/blackb6a/blackb6a-ctf-2023-challenges/tree/main/20-isekai-tensei-hakka

第三章 — 佔領中央大陸風雲榜

當我看到世界冠軍是如此遜色的時候，我便手賤按了一下挑戰冠軍。

「挑戰冠軍需付3000元費用」系統又出現奇怪的訊息。「挑戰冠軍最少需5000」
突然又彈多了一個對話窗，系統你未食藥？結果我先回到水晶之間掃蕩一番。

系統又猝不及防地出現了奇怪的訊息：「站長要考驗大家是否有認真在玩」

你看我認真到把自己的能力值改滿，還有誰比我還認真？

下面有個疑似 CAPTCHA 的老土圖片，然後牠叫我「請輸入安全驗證碼」。

我只好無奈地輸入。那個提交按鈕還有個奇怪的標籤「填好答案了,放我過關吧!!」
按了一下，又彈對話窗「恭喜答對了」，多X謝晒喎。

結果我在水晶之間奮戰幾分鐘之後 (當中幾乎是等候的時間)，終於儲夠錢了。

我交上 3000 大元去挑戰冠軍。結果很明顯，一回合也不到就順利當上冠軍了。

我滿意地看著世界冠軍的告示板。唯一美中不足的是那個英雄檔案是我亂址的主頁。

「滿意啦？」謎之音對我說。「唔滿意囉，打一場又要等，又要磅水，咁麻煩。」

「你去睇下風雲榜？」謎之音慫恿地說道。我又找到了一個叫風雲榜的告示板。

這裡竟然寫著各項屬性值的排行。我毫不意外奪下了各項的榜首。

「等級 202、hp 5277481、物理攻擊 65535、魔法攻擊 65535、速度65535…」

最底有一項叫「好野人 top」，裡面都是一些有錢人，窮如我看不見自己的蹤影。

「為什麼叫『好野人』？係咪同表姐你好野有關？」

「你去問呂█ █ 囉，台灣話我識鬼咩」隨後系統畫面浮出一個 :bcgugu: 的表情符號。

於是我開始想辦法搵真銀。如果只靠冒險應該打到佛誕都似。不如試下去賭場？

在風雲榜旁邊有一個賽鳥場。我也不知道這賭檔是怎麼運作的，於是我向右捽了下。

我找到了 class/wog_etc_race.php的原始碼。在第 40 行，投注金額如下：

$money=(int)trim(addslashes($_POST["money"]));
多麼複雜的處理呢……看來這裡的賭場不太歡迎我這種滲透術士。

之後我再用 Sublime Text 找找哪裡有可以利用的 update wog_player指令句。

4

Isekai Tensei Hakka Vol 1 Issue 3
Ozetta

AD-HOC

https://github.com/blackb6a/blackb6a-ctf-2023-challenges/tree/main/20-isekai-tensei-hakka

其中 class/wog_act_pk.php的 pk_setup有點有趣。看來是跟Ｘ街有關？

「你有錢設定PK金額咩？」謎之語輕蔑地說。我回了它：「設定完咪有錢」

隨後系統畫面出現了 :blobcatthinkingglare:的表情符號。我心諗：「慢慢諗啦諗樣」

我再三確認一下這個漏洞是否可被利用。首先 pk_setup會在第 28至 35行檢查，

檢查 $_POST["pk_money"]有沒有填寫和是否數字。反正我對這東西也沒興趣。

之後在第 37行會先找出玩家現有的金錢，再於第 39行檢查是否有足夠金錢，

以及如果參加PK的話，PK金額是否於 1000至 100000之間。反正我也不想 PK。
最後在第 44行執行以下指令句：$DB_site->query("update wog_player set
p_pk_s=".$_POST["pk_setup"].",p_pk_money=".$money." where
p_id=".$user_id."");而 $_POST["pk_setup"]看起來可以改的。

把它從數字改成「數字,欄位=數字」就是典型的 SQL注入攻擊來更新其他欄位。

我隨後去到 PK設定頁，把 pk_setup的數值由 0改成 0,p_money=9e99。
再把金額隨便填成 1000，然後按下確定按鈕。系統提示：「設定成功!!」
我再看看自己的角色狀態，發現金錢果然變成了 4294967295。發達啦🏧
再去風雲榜看看排名，不出所料我也變成了好野人 TOP的第一名了。

發咗達梗係去包間總統套房啦。於是我按了住宿……
結果系統還是老土的顯示「休息了一晚後,HP回復精神跑滿!!」
「喂系統，說好的異世界度假呢？」我不滿地叫嚷著。謎之音：「嚟啦喂嚟啦喂」

我回過神後，床邊突然堆滿了錢。「好好笑喎」我不滿地說著。

然後我看看系統畫面，結果竟然是這個房間的畫面。最令我詫異的是我竟然無著

衫？「你依家先知你無衫著咩？」謎之音冷冷地嘲笑著。

為了這故事不會被淫審處 Bam，我立刻跑到PK設定弄幾套衣服。

你問為什麼是PK設定而不是裝備欄？既然錢可以變出來，衣服也可以吧……
我匆忙地把 pk_setup的數值由 0改成 0,d_body_id=118，之後按確定。

我再看看角色狀態。好像沒甚麼分別？「你試下登入多次啦」謎之音回應著。

我隨後再登入一次，發現身體多了裝備了！多了個……「究極緞帶」……

……原來我把身體的裝備設成了頭部的裝備……我自暴自棄的穿著緞帶走在街上。

路人也沒有用甚麼奇異的目光看著我，看來這裡的 NPC已經習慣了玩家的品味。

冷靜了一下後，我打算把風雲榜其餘的位置都佔據，包括勝場、PK WIN和鳥奪冠。

另外等級和 hp也可以改大一點。之後我又去到PK設定操作一番：把那個 0改成

0,p_win=9e99,p_pk_win=9e99,p_cho_win=9e99,p_lv=9e99,p_exp=9e99
,p_nextexp=1,p_hp=9e99,p_hpmax=9e99,p_bank=9e99
順便再弄點個銀行存款吧。按確定後，周圍的景色突然閃了一下。再去風雲榜看看：

勝場、等級、hp、鳥奪冠都是 4294967295、PK WIN則是 2147483647。
「開心啦？滿意啦？」謎之音不屑地說。我回答：「未滿喎，魅力果啲都未滿。」

「順便轉埋做大賢者好無？」謎之音提議到。我回答：「哦…ch_id=30，得啦」

改成 0,p_vit=9e99,p_luck=9e99,p_au=9e99,p_be=9e99,ch_id=30
確定後再查看角色狀態，我說：「做乜重係術士？」謎之音：「你都係登入多次啦」

重新登入後職業變成了大賢者。我心諗大賢者和術士有甚麼分別？反正能力都是滿。

5AD-HOC

異世界轉生黑客

Isekai Tensei Hakka
威噏變久噏？以 Black Bauhinia CTF Team為題材的輕小說正式拖稿登場！如果你想

(or唔想)你出現在本小說中，請 Send 1BTC畀@ozetta，你的意見有可能被接納。

第一卷—WOG FFA Battle

參考資料：

https://github.com/blackb6a/blackb6a-ctf-2023-challenges/tree/main/20-isekai-tensei-hakka

第四章— 次元攻擊

我決定不再理會那堆樸實無華的數據，好好地享受一下異世界生活。

首先我想食飯。可是原始碼所顯示的世界竟然連個像樣的食物也沒有。

那裡只有提及到銀鯨仕事所的酒吧老闆娘，又不是酒吧薯條，食得咩？(黃韋建：姼)
還有道具屋賣的 hp回復劑，是另類的辟谷丹嗎？我只好在街上閒逛看看有沒有食店。

我好容易才找到一間中世紀歐陸風的食店，進門後拿起兩個金幣給店員。

以我對異世界的認知，一個金幣等於一百個銀幣，一個銀幣等於一百個銅幣。

這就像麻雀裡的一筒代表一個銅幣，一索代表一百個銅幣，一萬就代表一萬個銅幣。

而一個銅幣的價值應該跟一百日元差不多。兩個金幣應該差不多值十萬港幣啦。

店員看到兩個金幣之後兩眼發光，隨後問我：「客官想要啲咩？」

我問她：「有無 Omakase？」店員回答：「有！套餐包主菜和飲品，OK嗎？」

我表示了 OK的手勢後，店員就開始準備食物了。等了十五分鐘後，終於上菜了。

擺在我眼前的竟然是焗豬扒飯和凍檬茶。說好的中世紀歐陸風呢？

還有這兩樣東西值十萬港幣？會唔會過份咗啲？「得咁多咋？」我不愉快地問道。

「係啊客官，最近通漲得好犀利啊。銀行話唔知點解印多左四十三億銅幣喎？」

聽到她這樣一說，我突然飆了冷汗……心裡想起那個 p_bank=9e99的東西。

「客官你唔舒服牙？」我作狀從緞帶裡拿出一個金幣問：「加多個湯夠唔夠？」

「夠！梗係夠！找返你七十個銀幣……」我心虛地說：「唔使找啦，當畀貼士。」

店員禮貌地道謝後就去了準備食物。後來店員送來了一盅老火湯。我都不想吐嘈了。

飲飽食醉之後，我走出街上再逛逛。反正這異世界這麼離譜，說不定還有音驚機舖。

正當我在努力的尋找異世界的秋葉原時，我感覺身後好像有一班黑衣人跟著我。

我心想「想跟蹤敏捷 65535 的我，無咁易」隨後我以飛快的步法跑到去一個後巷裡。

「哈哈，重唔畀我捕到你。」眼前一名穿著黑色西裝的男人 看著我。

然後他從口袋裡拿出一把短劍，「好耐無見喎 ozetta」，他囂張地叫嚷著。

我思考了一會後，想起眼前的人正是多年沒見的 Dr. ROT10。「哦，原來係付伊笙」

「 」他傲驕地說。我想起上次塵夏幟說的同一番話，難道這真的是夢？

6

Isekai Tensei Hakka Vol 1 Issue 4
Ozetta

AD-HOC

https://github.com/blackb6a/blackb6a-ctf-2023-challenges/tree/main/20-isekai-tensei-hakka

「 」我狡猾地回應。突然謎之音傳出：「正經啲啦 」 Dr.
突 突然周圍環境一黑。「唔掂啦要 Rollback」謎
之音怒氣沖沖地警告：「呢度係劍與魔法的數碼世界，唔係 言情小說」

……
「好耐無見喎 ozetta」，一名手持短劍身穿黑色西裝的男子囂張地叫嚷著。

「你乜水啊？想點啊？」我驚訝地說。男子回應：「你唔認得我啦？我想打劫啊。」

「你睇我成身上下有咩可以打劫？」我不屑地回應。

……眾人一片沉默。連謎之音也沉默了。「唉呢個腐醫生真係無好帶挈，Skip啦」

隨後天上的雲朵突然郁得好快。那男子也突然郁得好快。65535敏捷的我也追不上。

然後眼前被一陣白光包圍，

突然系統畫面出現了一個提示，我向下捽了一下畫面，寫著「主線任務」

謎之音興奮地說：「終於嚟啦，快啲撳入去睇下」，「任務一：殺死 Dr. ROT10」

我隨後找到了於未知區域的 Rotten，然後用偵查對手功能看看。「竟然只有 10 級」我

再向他發起 PK挑戰，結果系統彈出了對話窗：「對手拒絕PK 或 PK條件不符合」我只

好再利用 PK設定 0,p_lv=10來把自己的等級改到 10 級來滿足系統的條件。毫無

懸念我在一回合內把他殺死了。「ozetta 獲得了勝利！！HP剩下 4294967295」我的

等級也從 10 級升到 1195 級。但是我不是殺了那渣 為什麼沒系統提示？隔了

一會，在競技場一旁忽然冒出了一陣白光，Dr. ROT10 從那完好無缺地站起來。

「哈哈 ozetta，你殺唔死我架」

……眾人一片沉默。為了打破沉默，

 謎之音說：「唉我無眼睇啦」

為了不再被系統 Skip掉重要場景，我以 65535敏捷快速逃離競技場。

如果普通攻擊殺不死玩家，那試試次元攻擊？連裝備編號 70的次元之鎧也擋不著。

「你知道有鎧甲點解重要著條爛鬼緞帶？」謎之音極度不滿地吶喊著。我沒有理它。

先試試奪舍大法吧，我試試把 Dr. ROT10的密碼偷來看看。我把 PK設定的值改成
0,p_sat_name=(SELECT p_password FROM wog_player WHERE
p_name='Rotten')，按下確定後系統彈出了對話窗：「有不正常符號(1)」……
原來我忘了把單引號拿掉。那我應該怎樣避免使用「不正常符號」呢？方法很簡單，只

要把 'Rotten'改成 0x526F7474656E就好了。我再點了一下，結果沒反應。我再

看看開發人員工具裡 Network 的內容，發現系統出錯了：

You can't specify target table 'wog_player' for update in FROM clause
那我只好再加一層 Subquery 了：0,p_sat_name=(SELECT p FROM (SELECT
p_password p FROM wog_player WHERE p_name=0x526F7474656E) x)
確定後再重新登入就看到必殺技名稱變成了 pvkq{Lido} 。果然是個老土的密碼。

我用這密碼登入了 Rotten 的帳號，周圍的環境也變了。

我登入回 ozetta 的帳號，周圍的環境也變回我住的總統套房。隨後我走到帳號中心，

在「角色自殺」裡把 Rotten 的帳號和密碼填下並提交。「刪除成功!!」任務完成！

7AD-HOC

Recently, I have been working on a research project related to signage
hacking. One of the most interesting findings I found is about the Infrared
(IR) sensor. I discovered that I can nearly fully control all the Android
signages using an IR transmitter, given that we found the correct sets of
codes and the signage contains an IR sensor.

If you read Bryon’s “Flipper Zero 推坑簡介” in public volume 1, he said he
can control the projector using the infrared module inside Flipper Zero.
I also used Flipper Zero to do the attack. Besides that, an even more
interesting thing is that I bought a $9 universal remote in Apliu Street,
and it works too UwU…

So… How IR remote control works? How can we control these devices
using IR remote control?

Before we dig into how to control devices containing IR receivers using IR
remote control, let’s just talk about how IR remote control works first.

From the name of the remote controller, an IR remote control works by using
infrared light to send signals to a device (X bilge). However, as there are
millions of infrared lights everywhere, IR receivers will continuously receive
all those IR signals when it is on. Therefore, IR receivers will need a way to
filter out the correct IR signal and perform actions based on the IR signal.

There are various types of IR protocols out there, but the most common ones are NEC Remote
Protocol and RC5 Remote Protocol. And for all the Android signages I tested, they used NEC Remote
protocol. Therefore, let’s take NEC as an example.

Like most of wireless signals, the NEC code uses a carrier frequency of 38KHz to avoid interference.
The actual data is modulated using 38KHz (26.3µs) modulating frequency. When a button on the remote
is pressed, the IR Blaster sends a stream of data to the receiver. And the receiver will process it to
retrieve the address and command.

Left: illustrate the modulating frequency, Right: the real IR signal captured under oscilloscope

Reference: https://circuitdigest.com/microcontroller-projects/build-your-own-ir-remote-decoder-using-tsop-
and-pic-microcontroller

Almost all the signages had an
infrared signage near the
bottom right of the screen. If
you saw there is a light there,
most likely is there.

Code of Ethics: Again, it is very likely that you can control most of the Android signages using an IR
transmitter, e.g. Flipper Zero, or a $9 universal remote control. So please don’t attack those signages
you saw in the public after reading this article :D I am not responsible for that :D

If the remote is
functioning properly, you
will see a light if you try to
capture it using a digital
camera.

8

How to hack a signage using a $9 remote
a1668k

KNOWLEDGE SHARING

https://circuitdigest.com/microcontroller-projects/build-your-own-ir-remote-decoder-using-tsop-and-pic-microcontroller
https://circuitdigest.com/microcontroller-projects/build-your-own-ir-remote-decoder-using-tsop-and-pic-microcontroller

The NEC format contains multiple sections, including:

- A 9 ms leading pulse burst (/ carrier waveform)

- A 4.5 ms space (/ OFF waveform)

- The 8-bit address for the receiving device

- The 8-bit logical inverse of the address

- The 8-bit command

- The 8-bit logical inverse of the command

- A final 562.5	µs pulse burst to signify the end of the message transmission.

The following example illustrates the format of an NEC IR transmission frame, for an address of 00h
(00000000b) and a command of ADh (10101101b).

Reference: https://techdocs.altium.com/display/FPGA/NEC+Infrared+Transmission+Protocol

With the knowledge of how IR remote works, if we know the address
and command of a specific brand of IR receiver, we can try to send an
IR signal following the format of that protocol. Tools like Flipper Zero’s
Infrared module can do the job by writing IR signal files specifying the
address and the command. You can also search for these IR signal files
from databases like Flipper-IRDB, or the “Universal Remote” function
in Flipper Zero.

Also, most of the IR receiver uses the same address for all the actions
they have. Therefore, we can try to brute-force the value of the
command after we found a correct set of address and command. In the research project, I found that
all of the Android signages use the address of 00h or 40h. And I can perform nearly all the actions, like
open settings, go to the home screen, or even turn off the signage, by brute-forcing the value of the
command.

If you try to buy a universal remote in Apliu Street, they typically come with a database of codes for
various TV brands and models. And you may be able to find a correct set of codes that can control the
devices using the search function on the universal remote. (I used a $9 universal remote xDD)

With the knowledge of these, you can now control almost all the devices comes with an IR sensor :D
If you want to know more about what else I have found during this research project, maybe this is the
topic of my next article :D

A snippet of the IR signal file I
wrote for controlling the
Android signages.

9KNOWLEDGE SHARING

https://techdocs.altium.com/display/FPGA/NEC+Infrared+Transmission+Protocol

AI Image Generation is slowly adopting to

different industries, especially advertisement.

For HongKongers, the most notable

one must be the 社企友建樹1 ads

from the government as it is ...

literally everywhere.

The technology is quite promising that - it

already causing illustrators losing jobs to AI,

serious concerns among human artists and

the anti-AI atmosphere among them. Well as

a tech person, we always trying on new stuffs

(not new anyway)... ride on it and see if it

works. Let’s get our hands dirty.

Warming up your GPU

There are many services for image

generation, and recently you can just use

ChatGPT or Bing to generate image. I don’t

like online services, so instead a local version

of Stable Diffusion (SD) would be used. The

minimum requirement is a (reasonably)

modern GPU with at least 4GB VRAM.

There are few UI for controlling SD, the

popular choices would be A1111 and

ComfyUI. Personally, I found ComfyUI is

better... but I would recommend a third UI:

Acly/krita-ai-diffusion which is a plugin for

Krita, an opensource painting program.

Follow the documentation and you can setup

it to use your local GPU or remote GPU2.

1 Retrieved from www.sehk.gov.hk

2 I am using a “Custom Server” setup connecting to my remote GPU server. Works

flawlessly, and my laptop won’t get hot. Using software from Internet at your own

risk and I am not responsible for whatever problem you got into. I got it VM isolated.

Hello World: Greeting to Krita AI

After setting up, you can try “Hello World”

for text-to-image (T2I), locally! Start by

opening a 512*768px canvas and get started:

① Model selection: choose art styles (model

checkpoint, LoRAs and style prompt).

We chose the default “Comic & Anime”.

② Settings: Setup additional art styles, etc.

③ Prompt: Type image description as detail

as possible for text-to-image generation3

④ Preview: Generated images would be

shown here. Number of images depends

on the image size and how powerful your

GPU is. Who can buy me some 4090?

Art style: Model Checkpoints

There are two main image generation base

models, namely Stable Diffusion 1.5 (SD1.5)

and Stable Diffusion XL (SDXL)4.

SD1.5 SDXL

Older model

Trained on 512px

Run faster

Newer model

Trained on 1024px

Run slower

Let’s add a model: AnythingV5 (SD1.5) from

CivitAI, which was used for Cover of Vol.2

3 Prompt used: Computer terminal with text “Hello World”
4 Pony is also SDXL based, and it have its own selection of prompt keywords.

Recently something called Flux.1 (F.1) appeared too, model file already ~15GB...

10

AI “Artist” (1): Text-to-image
apple

KNOWLEDGE SHARING

https://github.com/AUTOMATIC1111/stable-diffusion-webui
https://github.com/comfyanonymous/ComfyUI
https://github.com/Acly/krita-ai-diffusion
https://www.interstice.cloud/plugin
https://civitai.com/models/9409?modelVersionId=30163

The model checkpoint5 plays a major role for

the art style and understanding of prompt.

Check footnote6 for installation instructions.

Apparently, compared to

previous default “Comic &

Anime” model, AnythingV5

have better idea of what a

computer terminal is!

During the training stage, all images were

cropped to a square with 512 / 1024 pixels

width and labeled with text description. Then,

the T2I process starts with a random noise

image from a random seed7, then mutate the

image repeatedly for ~20 steps8 to follow the

prompt. This process is called denoise.

That’s why we set our canvas size to 512px as

it is what the neural network trained on.

Positive and Negative Prompts

Enter the description for desired image to the

(positive) prompt input box ③, as detail as

possible, in English of course. For example:

good quality, solo, girl, yellow hair,
heterochromia, left red eye, right orange eye,
white dress, paw pose, sitting on bed
in bedroom, morning, blue sky, stars, moon
shining

You can see the images are nice as instructed

by “good quality” prompt, but the model is

not following the prompt well – most of the

images got the eyes color wrong, some hair

5 Checkpoint (ckpt): the model file storing the tensors value (*.safetensors)
6 Download and place it to the ComfyUI “models/checkpoints” folder. Then, open

the Settings dialog ② and add a Style Preset. Choose “AnythingXL_v50” (the

filename) for Model Checkpoint and click OK.

color mixed with purple, and where the hell

the cat ears come from? None of the image

appears to be in morning too.

The cat ears might appear in our image due

to tagging mistake – some “paw pose” images

in the training data did not have “cat ears” as

its description, or there is not enough paw

pose images without cat ears. We can use

negative prompt to get rid of cat ears and

other undesired features, for example:

cat ears, nsfw, lowres, worst quality, low
quality, blurry, high contrast, bad 3d, jpeg
artifacts, text, signature, watermark

You can Google for more positive/negative

prompts. Model understanding on your

prompt depends on the training data quality.

But I want morning with moon and stars!

So, SD can’t follow our prompts correctly,

especially when your taste is unique. The

easiest way is to Gacha (draw) more images

and try your luck. However, “morning” is

conflicting with “moon”, so it won’t work. Fix

it by increasing the strength9 of certain words

in our prompt, simply add some brackets:

- (((((morning, blue sky))))) 10

- (morning, blue sky:1.5)

Can it replace human?

Is SD just copy-pasting from others drawing?

Can SD generate new idea? Well, I believe

human involvement is still the key for AI

artworks. See you in the next time and ofcuz

let me know if you have any ideas.

7 Seed: the seed for random latent noise image to start with, same seed same image.

8 Steps: how many iterations to mutate the image incrementally, even 1 step works.

9 Strength (weight): the importance of the keyword, typically +-1.5
10 5 pair of brackets so strength is 1.1^5, same as (prompt keywords:1.61051)

Im

ag
e

g
en

er
at

io
n

 (
T

2
I)

 p
ro

ce
ss

 o
f

“c
at

”,
 s

te
p

 1
,

4
,

6
,

8

▲

11KNOWLEDGE SHARING

In the last article we had some basic idea on

SD – which are just common sense right?

Let’s dive into more in depth topics:

What was it trained on

In the training stage, the SD model takes the

images and text descriptions pairs to find

relationship between them - word/phase are

associated with some image features.

Where are those images sourced from? Well,

it is mostly scraped (pirated) from Internet

along with text descriptions. Part of the

images are pirated from Booru image boards,

which are image sharing & tagging site run

by hobbyists. It was

established in 2005 –

way before AI images

is a thing and become

a valuable source for AI engineers thanks to

its quality tagging system (was tagged by a

bunch of unpaid humans!)

Example ②human art1 of Chen2 on Danbooru:
Artist: konna reshiki, Copyright: touhou, Character:
chen
General Tags: 1girl, solo, animal ear piercing,
animal ears, cat ears, hat, earrings, single earring,
jewelry, mob cap, brown eyes, brown hair, short hair,
bow, bowtie, white bow, white bowtie, petticoat,
frills, red skirt, puffy long sleeves, puffy sleeves,
long sleeves, skirt, skirt set, vest, red vest, flat
chest, hands up, sweat, speech bubble, simple
background, white background
Meta Tags: highres, translation request
Rating: General (Safe for work), Score: 7 (quality)
(composition), (face), (body), (action),
(background/layout)

That’s detailed right? Now you know how the

model define quality, SFW/NSFW, and what

to write for your prompt as the anime style

models were trained with these tags3.

1 Art by 紺奈れしき(@konna_reshiki), retrieved from danbooru:7722676
2 This good girl is called Chen (橙) from Touhou project. The original character

How detail should my prompt be?

Can we generate our purrfect Chen-chan?

▲ ③ Prompt: “chen” only ▲ ④ Prompt: <tags from ②>
Left ③: The model got few common features

of Chen from all the images that contains the

tag “chen”, therefore you can see the

distinctive cat ear, green hat, and the brown

hair. However, the clothes, hair style, even

the eye colors are completely different as it

varies between images in the training data /

have more association to other tags (this

allows us to put Chen in other clothes!)

Right ④: Simply putting all the tags of ② as

prompt and we got our Chen with similar

outfit as the images ① and ②. But it couldn’t

get the white bowtie... probably due to most

of the images with similar tags had yellow

bowtie, as the original character design was

yellow (see search result ①). Therefore, keep

in mind that tags / phrases will interact with

each other in some (unexpected) way, and

SD will generate image that it sees fits.

Overall, ④ is better than ③ by making Chen-

chan looks like Chen. So, try to describe your

image in tags and natural language in detail,

can ask ChatGPT to generate prompt too!

design was dated back to 2000 era so there are lots of fan arts!
3 In Krita AI, you can enable auto-complete for tags in Settings -> Interface.

▲ ① Search result of “Chen” on Danbooru

12

AI “Artist” (2): Prompts & Inpainting
apple

KNOWLEDGE SHARING

Embeddings (Textual Inversion)

Sometimes you might find it hard to describe

complex concepts that wasn’t tagged in the

model, and embeddings 4 could solve this.

You can find them from e.g. CivitAI and use

them as prompt keywords. EasyNegativeV2

and badhandv4 are commonly used to get rid

of unwanted image features and AI mistakes.

As any prompt keywords, it would affect

unexpected image features, e.g. image ⑤ the

hat color is different, speech bubble got a red

outline etc. See footnote5 for usage on Krita.

Gaining more control: Regional Prompt

When you want to have better control on the

layout and detail - regional prompt can helps.

Click the add region button twice, then

start drawing on the new region and type the

prompt for the region. Prompt will only

effect on the area that’s not transparent.

As shown, we have successfully put

two conflicting objects on the sky!

Partial Gacha: Inpainting (Generative Fill)

Say we are satisfied with image ④, but we just

don’t like the face. We can re-generate partial

area with inpainting. Adobe is selling this as

“Generative Fill” and the ads are all around...

Simply select the area with any selection tool

(e.g. rect or circle select tool). Then,

4 Embeddings (Textual Inversion) does not change the model itself; it just adds

additional “keywords” and associate it to the image features in model (thus its name)

the Generate button will turn into

which only the selected area will be generated.

The context area (i.e. pixels around the

selected area) is also sent to the model to

generate image that fit seamlessly, as

demonstrated by ⑥. Context can be changed

with the “Generate (Custom)” mode in the

dropdown menu of the Generate button.

The dropdown menu also contains

other features, such as “Expand” for

Outpainting. Others menu item are

self-descriptive.

Masterpiece face (マスピ顔)

Someone describes AI generated art as

average of images from the whole Internet,

lossy compressed into a 4GB model file.

With text prompt only, the variation of our

art is limited to what is tagged in the model ...

and the gaussian random noise image. When

the prompt is lacking creativity, produced

images all becomes “masterpieces”. We will

try more controlling methods next time,

which hopefully make us better AI “artists”?

5 Copy the files to ComfyUI “/models/embeddings”, then add the following

negative prompt to the Krita setting, e.g.: “(embedding:EasyNegativeV2:0.5)”

⑤
 (
em

be
dd

in
g:

ba
dh

an
dv

4:
0.

1)
 ▲

 Im

ag
e

④
 z

oo
m

ed
 ▲

▲ Image ④, selected area ▲ ⑤ Fill with original prompt ▲ ⑥ Fill with prompt

 for inpainting with random seed “yellow hair”

13KNOWLEDGE SHARING

Untitled 1

In this chapter, I will talk a about a very common techniques that Microsoft used for detecting
malicious software, Antimalware Scan Interface (AMSI) and Event Tracing for Windows (ETW).
and how the attackers techniques to bypass those detecting.

Antimalware Scan Interface (AMSI)
The Windows Antimalware Scan Interface (AMSI) is a versatile interface standard that allows
security applications and services to integrate with any antimalware product that's present on a
machine. AMSI provides enhanced malware protection for your end-users and their data,
applications, and workloads. For example, it will detect the malware or malicious files by searching
for any common strings or signature hex used such as “AMSI”, “ANTIVIRUS”, or
“X5O!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*”.

Windows AMSI architecture |
https://www.trendmicro.com/en_us/research/22/l/detecting-windows-amsi-
bypass-techniques.html

Event Tracing for Windows (ETW)
Event Tracing for Windows (ETW) is a mechanism commonly used for debugging and security
logging. Logging is leveraged by user-mode and kernel-mode applications. ETW is implemented in
the Windows operating system and provides developers a fast, reliable, and versatile set of event
tracing features. The security software can register the ETW provider to trace the function behavior
of a running process.

14

APT techniques studying
botton

KNOWLEDGE SHARING

https://www.trendmicro.com/en_us/research/22/l/detecting-windows-amsi-bypass-techniques.html
https://www.trendmicro.com/en_us/research/22/l/detecting-windows-amsi-bypass-techniques.html

Untitled 2

ETW Architecture | https://ithelp.ithome.com.tw/articles/10279093

Bypass AMSI and ETW
Both AMSI and ETW functions are the code block inside the dll file

AMSI: AmsiScanBuffer() in amsi.dll

ETW: EtwEventWrite in System.Management.Automation.dll

Therefore, we can patch the code block of those dll to bypass them.

Let’s say a very rough and simple patching solution:

1. We can use GetProcAddress() to retrieve the dll memory address.

2. Then use VirtualProtect() to modify the memory region to be read, write, and executable.

3. Finally, patch the targeted function and make it unable to be functional as intended.

However, the above method is very easy to be detected, so we can reference the techniques on

https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell

Those are the various techniques that the attackers commonly use for bypass AMSI and ETW such
as setting Hardware break point or using CLR Hooking.

15KNOWLEDGE SHARING

https://ithelp.ithome.com.tw/articles/10279093
https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell

In my previous article ”How LLL works (simply)”, we know about how to find solution
from lattice matrix by applying LLL. This time, we would learn about how to solve modular
polynomial equations with the Coppersmith’s method.

There are different types of polynomials. In this article, we look at the easy case of
univariate monic polynomials. Let 𝑁 be an integer and 𝑓(𝑥) = 𝑥𝑑 + ∑𝑑−1

𝑖=0 𝑎𝑖𝑥𝑖 be a monic
polynomial of degree 𝑑.

Build a matrix

Normally, if we wanna solve a polynomial mod 𝑁 , we need to factor 𝑁 . Most of the time,
𝑁 factors into large primes and is thus hard to factor. Coppersmith’s method helps us to
find all integer solution 𝑥0 to the equation 𝑓(𝑥0) = 0 (mod 𝑁).

The main idea of Coppersmith’s method is to construct a polynomial ℎ(𝑥) over the
integers with larger coefficients such that ℎ(𝑥0) = 0 holds over the integers, not just mod
𝑁 . To understand it, consider the lattice generated by the rows of 𝐵:

𝐵 =

⎡
⎢⎢⎢⎢⎢
⎣

𝑁
𝑁𝑋

𝑁𝑋2

⋱
𝑁𝑋𝑑−1

𝑎0 𝑎1𝑋 𝑎2𝑋2 … 𝑎𝑑−1𝑋𝑑−1 𝑋𝑑

⎤
⎥⎥⎥⎥⎥
⎦

Each row in the matrix corresponds to the coefficients of a polynomial. For exam-
ple, the first row (𝑁, 0, … , 0) corresponds to the polynomial ℎ0(𝑋) = 𝑁 , the second row
corresponds to ℎ1(𝑋) = 𝑋𝑁 , etc. The last row corresponds to the polynomial 𝑓(𝑋) =
𝑎0 + 𝑎1𝑋 + ⋯ + 𝑎𝑑−1𝑋𝑑−1 + 𝑋𝑑. The key is to notice that each row is 0 modulo 𝑁 when
evaluated at 𝑥0 - for example, ℎ0(𝑥0) = 𝑁 ≡ 0 (mod 𝑁) and 𝑓(𝑥0) ≡ 0 (mod 𝑁) by defi-
nition.

Since this matrix is lower-triangular, the determinant of 𝐵 is the product of diagonals:

det𝐵 = 𝑁𝑑𝑋 𝑑(𝑑+1)
2

and we want to find the upper bound of X and vector 𝑏1:

‖𝑏1‖ ≤ 2 𝑛−1
4 (det𝐿) 1

𝑛 = 2 𝑑
4 𝑁 𝑑

𝑑+1 𝑋 𝑑
2

In order to satisfy the Howgrave-Graham bounds, ‖𝑏1‖ < 𝑁√
𝑑+1 is needed. Simplifying

the algebra, we obtain an upper bound for 𝑋:

𝑋 < 𝐶(𝑑)𝑁 2
𝑑(𝑑+1) ≕ 𝑋

which we can treat it as 𝑋 ≈ 𝑁1/𝑑2 . In other words, if the original root 𝑥0 of 𝑓 satisfies
|𝑥0| ≤ 𝑋, then we can solve the equation 𝑓(𝑋) ≡ 0 (mod 𝑁) by running LLL on 𝐵 and
solving the equation over the integers.

Implementation

Let’s say we are given 𝑁 = 667(= 23 ⋅ 29) with unknown factorization, and 𝑓(𝑥) = 𝑥2 +
6𝑥 + 352 (mod 𝑁). Suppose that we know the solution is less than 𝑋 = 20. We construct

16

Introduction to Coppersmith's Method (simply)
Eason

KNOWLEDGE SHARING

the lattice 𝐵 like this:

𝐵 =
⎡
⎢⎢⎢⎢
⎣

𝑁
𝑁𝑋

⋱
𝑁𝑋𝑑−1

𝑎0 𝑎1𝑋 ⋯ 𝑎𝑑−1𝑋𝑑−1 𝑋𝑑

⎤
⎥⎥⎥⎥
⎦

= ⎡⎢
⎣

667 0 0
0 20 ⋅ 667 0

352 6 ⋅ 20 202
⎤⎥
⎦

After applying LLL on this matrix, we will get the reduced basis 𝐵′:

𝐵′ = ⎡⎢
⎣

−315 120 400
352 120 400
167 12260 −3600

⎤⎥
⎦

We can get the first row and interpret it as the coefficients of the polynomial ℎ(𝑋𝑥)
(since the matrix is scaled by 𝑋), then rescale it back to ℎ(𝑥) like this:

ℎ(20𝑥) = 400𝑥2 + 120𝑥 − 315 ⇒ ℎ(𝑥) = 400
202 𝑥2 + 120

20 𝑥 − 315 = 𝑥2 + 6𝑥 − 315

Finally, we can solve for the roots of h(x) over the integers with the quadratic formula
or Newton’s method and find that the solution 𝑥0 = 15. Note that we solve the equation over
the integers, not over modulo 𝑁 , and without knowing factorisation of 𝑁 .

If we try different values of 𝑋, you can find that if 𝑋 is too small, there is no solution.
If 𝑋 is larger than one of the factors of 𝑁 , the first row will be moved to the second row:

𝑋 = 7, 𝐵′ = ⎡⎢
⎣

37 84 98
−315 42 49
131 2695 −2303

⎤⎥
⎦

⟹ 𝑥0 = −3 ± 1
2𝑖

√
38 (not integers)

𝑋 = 24, 𝐵′ = ⎡⎢
⎣

667 0 0
−315 144 576
204 15000 −4032

⎤⎥
⎦

⟹ First row gives ℎ(20𝑥) = 667 ≠ 0.

Improvements

The upper bound𝑋 ≈ 𝑁1/𝑑2 are quite tight, so Coppersmith came upwith 2 improvements
on the matrix 𝐵 to increase the bound 𝑋:

1. Using 𝑥-shifts (of function 𝑓) 𝑥𝑓(𝑥), 𝑥2𝑓(𝑥), ⋯ , 𝑥𝑘𝑓(𝑥).
2. Increase the power of N, as for any 0 ≤ 𝑘 ≤ ℎ:

𝐹(𝑥) ≡ 0 (mod 𝑁) ⟺ 𝐹 𝑘(𝑥) = 𝐶𝑁𝑘 ⟺ 𝑁ℎ−𝑘𝐹 𝑘(𝑥) ≡ 0 (mod 𝑁ℎ)

After the improvements, the upper bound of 𝑋 is improved to about 𝑁1/𝑑 ≫ 𝑁1/𝑑2 .

...Can we NOT build a matrix every time?

In Sage, there is a function called small_roots(), it uses Coppersmith’s method which you
can just build a polynomial then call the function, but it can only solve univariate polyno-
mial. Therefore, you can use some tools and codes for multivariable polynomials, such as
defund/coppersmith and kionactf/coppersmith on GitHub. They are useful and effective
for general modular polynomial solving problems. And it is also a good example to learn
coding in Sage. Still, knowing how to build a matrix and how linear algebra works first is
always the best way to flexibly deal with different kind of lattice-based problems.

17KNOWLEDGE SHARING

https://doc.sagemath.org/html/en/reference/polynomial_rings/sage/rings/polynomial/polynomial_modn_dense_ntl.html
https://github.com/defund/coppersmith
https://github.com/kionactf/coppersmith

During the first few days of this year, while I was working on the front-end of one of my
projects, when suddenly, I noticed that the rendered page was malformed for no reason at
all. As a CTF player with just 1 year of experience, I had flashbacks from doing XSS
challenges and immediately identified it as a potential bug. After thoroughly checking my
code, I determined that it had to be the front-end framework’s problem, which is how I
reported my first security vulnerability.

A few more bugs and CVEs later, I found out that code used in production was actually way
more insecure than I thought it was, such that even a CTF newbie can discover 3 XSS bugs
in a well-known JavaScript front end framework. This motivated me to put my CTF skills into
practice, and what better way to challenge myself, than to go for one of the hardest targets,
“the big end boss of XSS” according to popular youtuber Live Overflow, DOMPurify.

Of course, a secondary school student with one year of CTF experience can’t simply find a
bypass in DOMPurify, it’s basically the most well-maintained defence mechanism against
XSS! That’s also what I thought, but since I had the Chinese New Year holidays ahead of
me, I decided to give it a try, treating it as a learning opportunity.

During the “challenge” I gave myself, I found a few resources particularly useful, these
include “Exploring the DOMPurify library: Bypasses and Fixes By Kevin Mizu”, the Dom
Explorer from YesWeHack, and a mXSS cheat sheet from Sonar Research.

If you’ve ever heard of the resources listed above, you will know that they all are in some
way or another related to mutation XSS. Why mutation XSS you may ask? Because I looked
at the recent DOMPurify bypasses and spotted a common theme: all of them are mutation
XSS bypasses paired with comments.

To illustrate, here is the DOMPurify 3.0.8 bypasses found by Kevin Mizu:

<svg><annotation-xml><foreignobject><style><!--</style><p
id="-->">

The simple explanation is that due to namespace confusion with the <svg> and
<foreignobject> tags, the first parsing treats <!-- as text, while the second parsing will
treat the same expression as a comment. This effectively means that DOMPurify will fail to
recognise the expression as a comment, but the browser will, meaning there is a mismatch
in interpretation, and that allows for exploits like XSS to occur. (The browser treats
</style><p id=” as a comment, while DOMPurify does not recognise it as a comment,
due to the parsing order.

What I have found is that since these types of mXSS are quite hard to patch,
cure53(DOMPurify’s maintainers) decided to straight up prohibit ending comment tags -->
from appearing in attributes. However, the team did not invalidate attributes with the >
character. Why would it need to be removed? Because HTML comments can actually
appear in multiple forms, and while the most common form you see looks like <!--...-->,

18

Analysis of Web Applications From a Noob's Perspective
ensy

KNOWLEDGE SHARING

the expression <! ... > is also surprisingly a valid comment, thanks to the incorrectly
opened comment exception documented in the WHATWG HTML specification.

Does this mean that if you replace <!-- with < and --> with > you can bypass DOMPurify?
Well, not exactly. This is because for the mXSS payloads to work, after the comment start
tag, you also have to first end the style namespace with </style>. Notice anything? It
contains the > character! This means that the comment will end here instead of in the
attribute of <p id=”>...”>, which is not ideal, since it makes the whole payload useless.

What we need to do is somehow remove </style> when rendering… After taking a deep,
deep look at the code, I realised that there is a function right at the end which removes any
expressions in the form of ${...} which makes the code safe for template engines.
However, this action is quite dangerous as it may conflict with the sanitized material. Taking
advantage of this, I used this feature to remove the annoying </style>, and successfully
bypassed DOMPurify version 3.2.3.

After 3 days of non-stop code auditing, “faking” bypasses, and questioning my sanity, I finally
did it, I bypassed DOMPurify. Throughout the journey I learned way more than I initially
expected, including mXSS techniques and how HTML tokenization worked, so the time
spent was really worth it. Words cannot describe how thankful I am to the entire Black
Bauhinia team, as they were the ones who got me interested in CTFs and helped me
massively along the way.

(Please note that the actual PoC uses a different starting payload from the one listed here,
as I tried to simplify it for explanation purposes.)
The full PoC and rest of the details are at https://ensy.zip/posts/dompurify-323-bypass/.

19KNOWLEDGE SHARING

Pwning 喺 CTF 入邊算係門檻比較高嘅類別，

而身邊都好少人特登去鑽研 pwn。所以今次我

會用 vsCTF 叫 Domain Expansion 嘅呢題做

示範，教吓近排 heap pwn 題比較興嘅

tcache poisoning，希望引起多啲人對

pwning 嘅興趣。以下會假設大家識少少

stack pwn。

領域... 展開

當我哋用 IDA 爆咗

題目個 binary ，會

發現呢個又係 note

app，裏邊嘅功能係

用緊 malloc 同

free 等去實現。

但係今次寫呢個

binary 嘅人冇咁戇居啦，識得記低每個 note

嘅長度，亦都有喺 free 咗個 note 之后剷埋個

pointer，看似就冇 heap overflow 同 use

after free 嘅漏洞。唯一嘅“bug”係如果你揀

260 嘅話，某個 note 就會擴大至任何長度，而

每次 run 都淨係可以展開一次。

咁今次我哋可以點利用五条悟幫我哋開個 shell

呢？喺度我會補充下 heap allocator 既運作

先。假設我用 malloc 整咗兩個 heap chunks

A 同 B，再依次序 free 咗 B 然後 A，嗰啲

chunks 唔會即刻消失，而係畀 allocator 以

一個 linked list（呢個情況係 tcache bin）嘅

形式記住：

(向左嗰個箭咀代表最尾嘅 pointer 為 null。)

當我哋再 malloc 嘅時候，如果呢個 bin 有啱

大小嘅 free chunk，個 allocator 就會直接攞

呢個 list 頭嘅 chunk。呢個係 glibc 其中一個

optimization。用 Pwndbg 嘅 vis 指令（全

名係 vis_heap_chunks），可以睇到每個

tcache chunk 係點嘅樣：

留意 chunk A 指去 chunk B 嘅 pointer (名為

fd)，係直接儲存喺 chunk A 入邊。意即如果

我哋有能力去修改 memory 嘅呢個地方，咁我

哋就可以 fake 個 allocator，話其實下個

chunk 係我哋任意揀嘅地方：

呢個 challenge 嘅 idea 就係利用五条悟賜畀

我哋嘅 buffer overflow 去修改 free chunks

嘅 FD pointer，令到 list 嘅第二個 entry 變咗

我哋揀嘅地方，然後再叫 allocator malloc 多

兩次，第二次 malloc 嗰個 chunk 就會變咗我

哋可以控制嘅 target 啦。

而家既然我哋有 arbitrary write，咁係唔係直

接 GOT overwrite ，令個 program 當咗

system 係要查找嘅 libc function 就搞掂呢？

冇咁易。

LIBC 都有 GOT ？

喺 glibc 2.34 之前，有個叫__free_hook (同

__malloc_hook) 嘅 libc variable，用處係畀

user set 一個 function 作為 free() 嘅

handler。當我哋得到 abritrary write 嘅能力

之後，可以將__free_hook 嘅位置改做

system()，令到 free(buffer) 嗰陣會 call

system(buffer)，幫我哋開個 shell 出嚟。但

係今次我哋嘅 libc version 係 2.35 喎，除咗

__free_hook 仲有咩嘢可以畀我哋 overwrite

呢？

其實 GOT (Global Offset Table) 呢樣嘢喺

executable 同 shared libraries 入邊都有

嘅。當我哋 run 個 binary，個 libc load 入嚟

memory 嗰時，會根據裏面嘅另一個 GOT 嚟

look up 自己啲 functions。Glibc version <

2.39 嘅話，個 libc ELF（唔係題目嗰個 ELF）

20

手把手解 Heap pwn: Tcache Poisoning
gldanoob

KNOWLEDGE SHARING

https://vsctf.storage.googleapis.com/uploads/b08fe006b1640d615d119e1ad3aad1a4943dae96334cf1bd5d4452593ac04f11/domain-expansion.zip

只係會有 Partial RELRO，所以我哋可以用類

似 GOT Hijacking 嘅呢招。

一個最常畀人 exploit 嘅 libc GOT entry 就係

__strlen_avx2（即係 libc 內部 strlen 嘅名

稱），而喺 Pwndbg 度打 got -p libc 就可

以見到佢嘅位置：

由於 puts(*s) 嘅

implementation 係

會 call 到

strlen(*s)，我哋

將 __strlen_avx2

改做 system 之後可

以將 "/bin/sh"寫

喺一個 chunk 入

面，再 read note，即係 print 個 chunk 出

嚟，咁 puts("/bin/sh") 嗰時就會 call

system("/bin/sh")，即係開個 shell 出嚟

啦。

但係若果我用 tcache poisoning 整嗰個 fake

chunk 直接擺喺__strlen_avx2 度，嗰

chunk 嘅 BK pointer 會變做 null，意即當

libc 用到 __strlen_avx2 嘅下一個 GOT

Entry (+0x8) 嗰陣會 segfault。一個解決方

法係將 chunk 擺喺三個 GOT entry 之前嘅位

置 (-0x18) ，而呢個位置嘅下一個 Entry (-

0x10) 係較少機會畀 libc 去 dereference

嘅，咁就唔需要擔心喺 exploit run 完之前

segfault。

少少嘅 details

細心嘅你可能會留意到第一版幅圖嘅 fd

pointer 根本唔係指向 chunk B。原因係

glibc 一個名為 Safe-Linking 嘅保護機制。

設 P 為原本嘅 pointer ， L 為 pointer 所在嘅

address (chunk A 嘅位置，即某個 heap

address)，咁 P' = P ⊕ (L >> 12) 就會係

encrypt 咗嘅新 pointer，而 P'先至係擺喺

chunk A 入邊嘅 value。本來呢個機制會令好

多冇 ASLR bypass 嘅 heap exploit 唔再運作

到，因為 attacker 冇一個 heap address 嚟

decrypt 個 pointer。

不過喺一個 special case 入邊，如果我哋

leak 到呢個 pointer 出嚟嘅話，可以正正利用

佢去 bypass heap 嘅 ASLR。當 tcache bin

得一個 entry，該 fd 會指向 null:

設 P0 係被 encrypt 咗嘅 null pointer，即 P0

= 0 ⊕ (L >> 12) = L >> 12。咁 P0 就係

encrypt 或者 decrypt 任何 fd pointer 嘅

key 啦 。（呢度假設啲 heap address 只係最

尾嘅 12 個 bits 唔同）要得到呢個 key，我哋

只需要 read 個 free chunk 出嚟。

咁既然我哋要好準確去 overwrite libc GOT，

libc 嘅 ASLR 又點樣破解呢？我哋有另一個叫

unsorted bin 嘅 free list，佢嘅結構為

circular doubly linked list，而頭尾都會係

main_arena（libc 裡面其中一個 struct）。

相信大家都知道要做啲乜 ⸺ 整個 chunk 出嚟

放入 unsorted bin, 再 leak 佢個 fd

pointer，即 main_arena 呢個 libc

address。但係個 chunk 要入到去 unsorted

bin 有兩個條件: 一係個 chunk 要夠大 (擺唔

入 tcache bin)，二係佢唔可以係 heap 最頂

嗰個 chunk。

點贏？

Solution 可以有無數個，以下係一個

guideline:

1. 整一個 32 bytes 同一個大 (> 1032

bytes) 嘅 notes ，再整多個 note 以防

consolidation ，delete 咗頭嗰兩個

notes

2. Domain expansion 最先嗰個 note，

分別用兩個 notes 嚟 leak heap 同

libc address

3. 將 tcachebin 清空，allocate 兩個 32

bytes 嘅 notes ，然後倒序放入

tcachebin

4. 修改 tcachebin 最尾嗰個 chunk，令

佢嘅 fd 指向 LIBC GOT 入面

_dl_find_dso_for_object 嘅位置

(切記要先自己 encrypt 個 pointer)

5. 清空 unsorted bin，然後 allocate 兩

次，以控制 libc GOT，將

__strlen_avx2 取代為 system

6. 將"/bin/sh" 寫入任何一個 note，再

read 佢，享受爆出嚟嘅 shell

21KNOWLEDGE SHARING

https://writeup.gldanoob.dev/domain_expansion

On August 29𝑡ℎ, Noam Elkies and Zev Klagsbrun announced [4] the discovery of an elliptic curve of
rank (at least) 29* over the rational numbers. It has Weierstrass equation:

𝐸 ∶ 𝑦2 + 𝑥𝑦 = 𝑥3 − 0x10ce554d1283aeafe731dd2285b1cbb543c3ed4853127f6894e9𝑥
+ 0x1b206f3de15feb61e310e519ad8a7a827cca68b96d2601d74570c8b6c488211c097e59cfac359

This increments the previous record of a rank 28 curve, also found by the two. In this article I hope
to explain this result means, why it is significant, and the general idea behind the search.

1 Rank of 𝐸/ℚ
To begin, we must first understand what the rank of an elliptic curve is. Consider the set of rational
points (𝑥, 𝑦) ∈ ℚ2 satisfying 𝐸 ∶ 𝑦2 = 𝑥3 + 𝑥. It is easy to find one such point: (0, 0), but other than that
it is unclear whether there are any other points. Indeed, it can be proven that this curve has finitely
many points: 𝐸(ℚ) is finite. By contrast, consider the curve 𝑦2 = 𝑥3 − 16𝑥 + 16. It is not difficult to
find many points on this curve: (±4, ±4), (±4, ∓4), (0, ±4), (0, −1), etc. One may again wonder if there
are infinitely many such rational points. In this case, it can be proven that there are infinitely many
points. They can be generated via the following SageMath code:

sage: E = EllipticCurve([-16, 16])
....: G = E.gen(0)
....: print(*[(G * k).xy() for k in (1..8)])
(0, -4) (4, -4) (-4, 4) (8, 20) (1, 1) (24, -116) (-20/9, -172/27) (84/25, 52/125)

To differentiate between these curves, we can use the fundamental theorem of finitely generated
abelian group and Mordell-Weil theorem (1922), which are stated below:

Theorem 1.1: Fundamental Theorem of Finitely Generated Abelian Group

Let 𝐺 be a f.g. abelian group. Then, there exists 𝑟 ∈ ℕ such that 𝐺 ≅ ℤ𝑟 ⊕ 𝐺𝑡𝑜𝑟𝑠, where 𝐺𝑡𝑜𝑟𝑠
are the elements of 𝐺 with finite order and is finite. The value 𝑟 is called the rank of 𝐺, denoted
rk(𝐺).

Theorem 1.2: Mordell-Weil Theorem

Let 𝐸/ℚ be an elliptic curve. Then 𝐸(ℚ), also called theMordell-Weil group, is finitely gener-
ated.

These two theorems combined tell us that 𝐸(ℚ) as an abelian group has structure ℤ𝑟 ⊕ 𝑇 for some
finite group 𝑇 . Just to be clear, the 𝑟 here indicates the “dimension” of (the torsion-free part of) 𝐸(ℚ).
For example, when 𝑟 = 0, then 𝐸(ℚ) ≅ 𝑇 is a finite group, while when 𝑟 > 0, the set of rational points
on 𝐸 is finite. This is one of our goals from the start, but we can extract more information from 𝑟.
More specifically, when 𝑟 > 0, there exists a basis {𝐺1, 𝐺2, ⋯ , 𝐺𝑟}, each of infinite order, such that
every point in 𝑃 ∈ 𝐸(ℚ) can be uniquely written as 𝑃 = 𝑃 ′ + ∑𝑟

𝑖=1[𝑐𝑖]𝐺𝑖 for some integers 𝑐𝑖 ∈ ℤ and
a point of finite order 𝑃 ′.

Moreover, Mazur’s theorem (1978) shows that 𝑇 only has a finite number of choices (in particu-
lar, |𝑇 | ≤ 16), and is efficiently computable. Hence to understand the structure of an elliptic curve
over the rationals, we want to determine the rank 𝑟. More generally, we would like to understand the
distribution of 𝑟 and how it relates to other invariants.

Nowwe understand Elkies and Klagsbrun’s latest result: they discovered a curve with rank 𝑟 ≥ 29*,
improving on the previous record of 𝑟 ≥ 28!*. They explicitly found 29 linearly independent points on
the curve given at the start.

*All rank inequalities 𝑟 ≥ 𝑟0 in this article can be replaced by 𝑟 = 𝑟0, under the assumption of GRH when 𝑟0 ≥ 2. ??

22

A Primer on Searching for High Rank Elliptic Curves
grhkm

KNOWLEDGE SHARING

2 Specialising fibrations

Next, I want to attempt to explain the high level ideas behind the method of discovering such a curve,
as clearly it is not obtained by testing coefficients one by one. Elkies and Klagsbrun’s strategy consists
of two parts: (1) finding an elliptic fibration ℰ/ℚ(𝑡) on a K3 surface with large Mordell-Weil rank 𝑟, and
(2) sieving for good values of 𝑡 for which the specialisation 𝐸𝑡 has large rank.

First off, don’t be scared of the scary terms like elliptic fibration and elliptic surface! A simple mental
model for them is just a normal elliptic curve 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, but with coefficients 𝑎, 𝑏 in the function
field ℚ(𝑡), or for our purpose even 𝑎, 𝑏 ∈ ℚ[𝑡] holds†. Recall from my isogeny article that the notation
𝐸/𝐾 just means an elliptic curve 𝐸 defined over 𝐾, as a subset of 𝐾2.

For the remainder of this article, we will use the elliptic surface ℰ0 ∶ 𝑦2 = 𝑥3 + (𝑡12 − 26𝑡6 − 343).
Notice that it is an equation of 3 variables, which suggests that this is a surface. However, the correct
way to view this is that 𝑡 is a parametrising variable, and ℰ0 is a parametrised family of elliptic curves‡.

A key property of ℰ0 is that it hasMordell-Weil rank at least 4. Indeed, it is proven in [5, Theorem 5.8]
that the following four points on ℰ0 are linearly independent as points over ℚ(𝑡):

(8, 𝑡6 − 13), (−𝑡6 + 49
𝑡2 , −11𝑡6 + 343

𝑡3) , (𝑡6 + 7, 𝑡9 + 11𝑡3), 1
64 (36𝑡10 + 344𝑡4 + 196

𝑡2 , 27𝑡15 + 387𝑡9 + 1145𝑡3 − 343
𝑡3)

How does this help us find high rank elliptic curves defined over ℚ? The hope now is that by spe-
cialising 𝑡 to a rational number 𝑡0, i.e. by evaluating the equation and points at 𝑡 = 𝑡0, we can obtain an
elliptic curve 𝐸𝑡0

/ℚ which automatically has four rational points on it, meaning that if the other points
behaves “randomly” and we are able to find more linearly independent rational points, then 𝐸𝑡 will
have a higher rank than usual. Of course, we are relying on the assumption that the four points above
remain linearly independent over ℚ once evaluated at 𝑡 = 𝑡0. Fortunately, Silverman proved that this
is usually true:

Theorem 2.1: Silverman’s Specialisation Theorem [7, Theorem 11.4]

Let ℰ be an elliptic surface defined over the function field ℚ(𝑡). Then the specialisation map

𝜎𝑡0
∶ 𝐸(ℚ(𝑡)) → 𝐸𝑡0

(𝑥, 𝑦) ↦ (𝑥(𝑡0), 𝑦(𝑡0))

is well-defined and injective for all but finitely many points 𝑡0 ∈ ℚ.

Let’s do an example with our elliptic surface ℰ0. By direct computation, we see that for 𝑡0 = 3, 9, 20,
we get𝐸3 ∶ 𝑦2 = 𝑥3+512144,𝐸9 ∶ 𝑦2 = 𝑥3+282415718672 and𝐸20 ∶ 𝑦2 = 𝑥3+4095998335999657 respec-
tively, and for thefirst case, the 4points provided specialise to (8, 716), (−680/9, −7676/27), (736, 19980)
and (302857/9, 166669613/27). In Section 4, we shall verify that in all cases, the specialised points are
indeed linearly independent, so right off the start, we already have three curves with rank at least 4.
However, it is even better than that, as we are able to find more linearly independent points. In fact,
the naive method of enumerating integers 𝑥 and search points on 𝐸(ℤ) yields linearly independent
points. In the end, we obtain that rk(𝐸3) ≥ 4, rk(𝐸9) ≥ 7 and rk(𝐸20) ≥ 8, and we will prove equality
in Section 5.

sage: points = [...]
....: for x in range(2^22):
....: if E.is_x_coord(x):
....: P = E.lift_x(x)
....: if check(E, points + [P]):
....: points.append(P)

†But ℚ[𝑡] is a ring, so we can’t define a variety over it without scheme theory.
‡With some singular cubic curves here and there, but I digress.

23KNOWLEDGE SHARING

Going back to Elkies and Klagsbrun’s result, they did precisely our method, but on a much larger
scale, and by being much smarter. As described in [2, p. 24] and in detail in [3, p. 10], to find a suitable
elliptic fibration, they enumerated the 167889 elliptic fibrations (that’s 167889 parametrised elliptic
curve family!) on the K3 surface with Néron-Severi group of rank 20 and discriminant −163, words
we don’t need to understand. Among those, they found a rank-17 fibration. However, they did not
compute an explicit model for the fibration, so we are unable to play around with it ourselves. The
only step that remains now is to find good specialisation values 𝑡. For my elliptic fibration, I was able
to find the rank-8 specialisation by luck and (initially) a 2-hour bruteforce, but that doesn’t scale well
at all. Instead, a smarter idea based on the BSD conjecture is used.

3 BSD conjecture and high rank elliptic curves

Being one of the millenium problems, the Birch and Swinnerton-Dyer (BSD) conjecture is one of the
most famous open problems in number theory, providing deep insights into the structure of elliptic
curves. Specifically, the conjecture links the rank 𝑟 of an elliptic curve 𝐸/𝐾 over a number field 𝐾 to
the behavior of arithmetic invariants associated with primes 𝑝. One formulation of the conjecture is
given below:

Conjecture 3.1: Birch & Swinnerton-Dyer Conjecture [1]

Let𝐸/𝐾 be an elliptic curve of rank 𝑟. Then,∏𝑝≤𝐵
𝑁𝑝
𝑝 ≈ 𝐶(log𝐵)𝑟, where𝑁𝑝 ≔ 𝑝+1−|𝐸(𝔽𝑝)|a

and 𝐶 is a constant dependent on 𝐸.
aThis definition is true at primes with good reduction, and I do not want to talk about the other case.

To break this conjecture down even further, we can take logarithms to see that ∑𝑝≤𝐵 log(𝑁𝑝/𝑝) ≈
log𝐶 + 𝑟 log log𝐵. This gives us a somewhat heuristic method to check whether a curve has high rank.

First, fix a bound 𝐵, say 216. Given an elliptic curve 𝐸, we can reduce it at each (good) prime 𝑝,
compute |𝐸(𝔽𝑝)| and hence 𝑁𝑝, and evaluate the sum ∑𝑝≤𝐵 log(𝑁𝑝/𝑝). If it is large compared to other
similar curves§, then we know that it has high rank! For example, the two curves below have similar
size, yet one has rank 11 and one has rank 3. The E.pari_curve().ellrank()[:2] returns (unconditionally)
upper and lower bounds for the curve, while E.Np(p) computes the quantity 𝑁𝑝 defined above.

sage: E = EllipticCurve(QQ, [0, -54141938135, 0, 771820685537294757888, 0])
sage: E.pari_curve().ellrank()[:2]
[11, 11]
sage: sum(n(log(E.Np(p) / p)) for p in prime_range(2, 2**18))
15.7842585917576
sage: E = EllipticCurve(QQ, [0, -54141938088, 0, 771820685537294757888, 0])
sage: E.pari_curve().ellrank()[:2]
[3, 3]
sage: sum(n(log(E.Np(p) / p)) for p in prime_range(2, 2**18))
1.67922917143010

To further speedup the computation, instead of testing the specialisations 𝐸𝑡 one by one and com-
puting each 𝑁𝑝 slowly, Nagao realised that if the coefficients of the defining equation of ℰ/ℚ(𝑡) are
all polynomials in 𝑡, then |𝐸𝑡(𝔽𝑝)| only depends on 𝑡 (mod 𝑝). As a result, it suffices to precompute
log(𝑁𝑝/𝑝) and store ∑𝑝<𝐵 𝑝 ∼ 𝐵 log𝐵 values, and computing the sum ∑𝑝<𝐵 𝑁𝑝/𝑝 takes 𝒪 (𝐵/ log𝐵)
time. There are further tricks such as sieving documented i [4], low-level optimisations and (ab)using
integer arithmetic, but go ask @happypotato about that.

As a remark, there have been other types of sums (“score functions”) used in place of 𝑆(𝐵) =
∑𝑝<𝐵 𝑁𝑝/𝑝 (which is due to Mestre). In [6], Nagao used 𝑆(𝐵) = ∑𝑝<𝐵(−𝑁𝑝 + 2)/(𝑝 + 1 − 𝑁𝑝) and
𝑆′(𝐵) = ∑𝑝<𝐵 −𝑁𝑝 log 𝑝/𝑝 to find a curve of rank at least 20.

§For “similar enough” curves, the constant 𝐶 will be approximately the same

24 KNOWLEDGE SHARING

4 Verifying linear independence

I realised that this article is getting too long, so I will put this on my blog soon. Stay tuned :)

5 Upper bound on rk(𝐸)
I realised that this article is getting too long, so I will put this on my blog soon. Stay tuned :)

6 Appendix

In Section 2, we went from a K3 surface (not shown) to an elliptic surface of rank 4, and finally to an
elliptic curve of rank 8. However, there is a much easier way to find elliptic curves of high rank. As a
motivating example, consider three arbitrary points 𝑃1 = (𝑥1, 𝑦1), 𝑃2 = (𝑥2, 𝑦2), 𝑃3 = (𝑥3, 𝑦3) ∈ ℚ2. By
solving simultaneous equations 𝑦2

𝑖 = 𝑥3
𝑖 + 𝑎2𝑥2

𝑖 + 𝑎4𝑥𝑖 + 𝑎6 for coefficients 𝑎2, 𝑎4, 𝑎6, we automatically
obtain an elliptic curve of at least rank 3 – precisely 𝑃1, 𝑃2, 𝑃3. To generalise this method, we can use
the fact that nine points determine a cubic to compute a cubic through nine points, though one has to
be careful about fixing the origin.

References

[1] B. J. Birch and H. P. F. Swinnerton-Dyer. “Notes on elliptic curves. II.” In: Journal für die reine und
angewandte Mathematik 1965.218 (1965), pp. 79–108. DOI: doi:10.1515/crll.1965.218.79.

[2] Noam Elkies. “K3 surfaces and elliptic fibrations in number theory”. BanffWorkshop 18w5190: Ge-
ometry and Physics of F-theory. 2018.

[3] Noam Elkies. “Three lectures on elliptic surfaces and curves of high rank”. 2007.

[4] Noam Elkies and Zev Klagsbrun. “ℤ29 in 𝐸(ℚ)”. 2024.
[5] Matthijs Meijer. “High rank elliptic surfaces”. In: Rijksuniversiteit Groningen (1999).

[6] Koh-ichi Nagao. “An example of elliptic curve over Q with rank ≥ 20”. In: Proc. Japan Acad. Ser. A
Math. Sci 69.8 (1993), pp. 291–293.

[7] J.H. Silverman. Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts inMathematics.
Springer New York, 1994. DOI: https://doi.org/10.1007/978-1-4612-0851-8.

25KNOWLEDGE SHARING

https://doi.org/doi:10.1515/crll.1965.218.79
https://doi.org/https://doi.org/10.1007/978-1-4612-0851-8

‭This is an article series dedicated to tips in reverse engineering in IDA. While IDA has many‬
‭issues (mostly our issue of being poor for an IDA Pro license) compared to other‬
‭decompilers, e.g. Ghidra and Binary Ninja, up-to-date IDA Free and its IDC support in‬
‭recent years offsets its disadvantages and makes it still one of the best tools for reverse‬
‭engineering.‬

‭Let's start with something basic: custom structures‬
‭When doing reverse, you will often encounter structured pointers in all the places,‬
‭especially when dealing with binary static compiled with large libraries / binary compiled‬
‭from non-C/C++ language:‬

‭Here,‬‭a1‬‭is a pointer pointing to some structure.‬‭You would want to define a structure for‬‭a1‬
‭to make it prettier and consistent in the decompiled view, as you won’t want to see‬‭a1+16‬‭all‬
‭the time. Instead, you would want to link‬‭a1+16‬‭which‬‭appears in various functions to‬
‭some common context, e.g. here,‬‭a1‬‭is the bignum structure‬‭from OpenSSL.‬
‭To do this, you will write the struct in C style. Usually, you can just get this from the repo if‬
‭the struct is from an open-source library, say OpenSSL or libcrypto.‬

‭typedef‬‭struct‬‭unsigned‬‭long‬‭long‬‭BN_ULONG‬‭;‬
‭struct‬‭bignum_st‬‭{‬

‭BN_ULONG *d;‬
‭int‬‭top;‬
‭int‬‭dmax;‬
‭int‬‭neg;‬
‭int‬‭flags;‬

‭};‬
‭typedef‬‭struct‬‭bignum_st‬‭BIGNUM‬‭;‬

‭In IDA <=8.3, you have to write the struct in a header file, then‬‭File > Load file > Parse C‬
‭header file‬‭(or just‬‭Ctrl + F9‬‭). But in IDA >=8.4,‬‭you can directly do this in the‬‭Local Types‬
‭subview, which replaces the previous Structures + Enums + Local Types subview. Just‬
‭(‬‭Insert / Right Click Add Type‬‭), and directly type‬‭the struct definition in the “‬‭C syntax‬‭”. It‬
‭is the same as the header file import method, but you don’t have to save a file.‬

26

IDA Tips 1: Custom Structures
harrier

KNOWLEDGE SHARING

‭After importing the struct, you can then change the type of‬‭a1‬‭to‬‭BIGNUM*‬‭. The function‬
‭looks like this after importing the custom structs:‬

‭More importantly, the struct can be reused and is much more effective on larger functions.‬
‭Just by changing the type definition, the functions become much more readable.‬

‭Of course, we can prepare header files for commonly used structures to avoid defining the‬
‭same struct over and over again, reusing library signatures in‬‭different‬‭decompilations.‬

‭Maybe we will do it in ctfools!‬

‭Next time we will be talking about FLIRT signatures. Stay tuned!‬

27KNOWLEDGE SHARING

This series is going to be one of the longest
series ever in Black Bauhinia Newsletter I think,

where this series will be investigating and discussing
the technical side of a popular sandbox game –
Minecraft. Throughout the whole journey, we’ll analyze
the Minecraft source code thoroughly, such that we
can perform different “exploits”. Such survival-
constructible contraptions are very powerful in the
game, which can lead to various game-changing
behaviors. Currently, the goal of this series is to guide
the readers to perform race conditions in Minecraft,
thus allowing to get almost any illegal item and blocks
in survival Minecraft. During the whole journey, we’ll
stick to Minecraft version 1.12 (still a very popular
version!). However, there are lots of prerequisites and
knowledge we need to understand before we can
reach the goal. Therefore, let’s get started!

Chunks

In order manipulate with data stored in Minecraft, let’s
mess with the chunks first! In Minecraft, there are 3
worlds, namely the Overworld, the Nether, and the
End. Each world consists of blocks and entities,
where a 3D Cartesian coordinate system is used to
map the blocks and entities to the world (I call it the
world coordinates, to distinguish with the chunk
coordinates, which will appear
later).Notice that the axes are
swapped in Minecraft, as shown
in the figure at the right.

Entities are mapped using the world coordinates (i.e.
float), where the Y-axis represents the floor level that
the entity is standing on. Blocks are more interesting
because they occupy a whole cube. For example, a
block occupies a cube from vertex (10, 63, 10) to
(11, 64, 11) , thus its center coordinate is actually
(10.5, 63.5, 10.5) .It is rounded down to (10, 63, 10)
and the game will use this integer block coordinate to
represent instead.

A world has almost infinite length X, Z axes (from
coordinates -30M to +30M), and Y axis from 0 to 255.
Since it’s too big to load and process everything in the
world, only some of the blocks and entities will be
loaded. Following the principle of spatial locality,
similar to page frames in physical memory of a
computer, Minecraft will also load a certain region
around the block/entity when it is being accessed, and
that region is called a chunk. A chunk is a cuboid that
contains all the blocks and entities from the vertex
(16𝑚, 0, 16𝑛) to (16𝑚 + 16, 255, 16𝑛 + 16) of the
world coordinates, where 𝑚, 𝑛 are integers. Therefore,
a chunk has a length/width of 16 blocks, and a height
of 256 blocks. Here, the coordinate (𝑚, 𝑛) is then the
chunk coordinate indexing a specific chunk. In
Minecraft, many events will lead an access to a
block/entity, causing the chunk that contains the

block/entity to be loaded. When a chunk is loaded, the
game will then process (i.e. tick) all the blocks and
entities in that chunk. (Not really the case with entities,
and there are some hidden conditions…, to be
explained in the next article probably).

Loading and Unloading with Chunks

Here are the events causing chunks to load or unload:

(1) The Overworld has a world
spawn, where chunks that are
near the spawn are spawn
chunks (determined by the code
as shown). Spawn chunks are
loaded at the start of the game,
and will NEVER be unloaded.

(2) Any movement event of a player
that involves moving across chunk
boarders, or teleportation (e.g. nether
portal/ender pearl teleportation), also
causes chunks to load or unload. In
game, the render distance 𝑑𝑟 of a
player is configured (e.g. 12 chunks).
Then the square region of diameter
2𝑑𝑟 + 1, centered at the player will be
loaded. We call those chunks are in the render
distance of the player. When a player moves across
chunk boarders or is being teleported, chunks that
should be in the render distance with respect to the
new position of the player, will be loaded; while chunks
that aren’t in any players’ render distance, will be
scheduled to unload.

(3) For some tile entities (i.e. blocks that stores state,
such as hopper, chest and redstone), they will access
their neighbor blocks and call their listener. The
following is an example:

The above logic will be executed at
every game tick (i.e. constantly),
and not limited to hopper, powered
redstone component also works.
Therefore, if we put the hopper at
the chunk boarders (pointing to
another chunk), the chunk next to
the hopper will be loaded, as long
as the chunk containing the hopper is being loaded.

(4) Every 45 seconds, the game will perform an auto-
save, thus schedule to unload all the chunks except
the spawn chunks (1), and chunks around players (2).

Note that chunk loading is instantly loaded when
required, while all chunk unloading is scheduled (i.e.
being unloaded later).

A code part determining whether the chunk is spawn
chunk, given the chunk coordinate (𝑚, 𝑛)

25 chunks

12 chunks 12 chunks

Player

Example of 12 chunks render distance.
Green is loaded and grey is unloaded.

Chunk boarders shown, the right chunk will always
be loaded, given the left chunk is loaded.

Note: Hopper must have an item for this to work.

28

Technical Minecraft - Chunk Loading I
hoifanrd

KNOWLEDGE SHARING

Naïve Chunk Loading

We know, players love to make automatic farms in
Minecraft. Thus the problem arises – the farm no
longer works when the chunks are unloaded (e.g. the
player leaves). As a result, keeping chunks loaded is
crucial for a systemic game in Minecraft.

Combined with what we have
learnt, it’s easy to think of a naïve
way to keep loading chunks:
Create a “hopper chain” from
chunks that are loaded. However,
this requires a stable “source” of
loaded chunks. For example,
spawn chunks can be used as a
source for such hopper chains,
but they are only available in the
Overworld and it’s annoying to
build a chain if the target chunk to
be loaded is far away from spawn.

Another option is to use chunks near the player as the
source. For example setting up the chain source to
your base, since you usually use more time to stay in
your base when playing Minecraft.

Ticking in Minecraft

Assume a long chunk loading chain is set up from your
base. Since player movement only unloads the chunks
in the player’s original render distance, even if you
leave your base and the source chunks of the chain are
unloaded, further chunks of the chain will not be
unloaded!

However, don’t forget about the auto unload every 45
seconds. So we are doomed!… Or is it? Let’s see is
there a way to bypass the auto unload. To understand
how unloading works, we need to know about what a
game tick is, which has been mentioned before.

Given Minecraft is a single threaded game, events in
the game are executed sequentially in a (game) tick,
where a ticks last for 0.05s, thus there are 20 ticks in 1
second. Some events in a tick are executed in order as
shown, with a lot of details omitted.

Also, function code marked in the red box (i.e. really
unloading the scheduled unload chunks) is shown
below:

Basic Idea

From the code, we may see that only at most 100
chunks will be really unloaded in each tick (to ensure
performance probably, thus the 101st and the chunks
following will be really unloaded in the next tick). Now,
assume we have a chunk 𝑋, which we want to prevent
its unloading from autosave, we may first prepare 100
auxiliary chunks 𝐶1, … , 𝐶100 in the same world as 𝑋 in,
and perform the following as shown in the flowgraph.

With this, we may get 3
questions:

1. How can we manipulate
with the iterator of the
droppedChunksSet, so that
the chunks 𝐶1, … , 𝐶100 must
be unloaded first?

2. How to make chunk 𝑋
always being accessed to
unscheduled its unload?

3. Also, 𝐶1, … , 𝐶100 will be unloaded thus this no
longer works in the next autosave tick. (i.e. we need to
load 𝐶1, … , 𝐶100 again before the next autosave tick).

Since there is not enough space left to discuss the
above questions, let’s answer them in the next article
of Technical Minecraft. As a challenge, you may also
try to solve those questions yourself first!

Blue chunks: Source chunks that are loaded.
The hopper in the blue chunk loads the 1st green

chunk, then the hopper in the 1st green chunk loads
the 2nd green chunk… and it continues.

29KNOWLEDGE SHARING

‭Sharing a Dynamic Analysis Technique: Function Interposition‬

‭Motivation‬
‭Once upon a time, there was a Linux application that needed to be reverse engineered. The app actively‬
‭communicated with a server, pulling instructions to perform actions like updating software versions or‬
‭changing configurations. I wanted to see the clear text HTTP traffic to better understand how the client and‬
‭server communicated, but I wasn't very skilled at reverse engineering. Luckily, I found a simple method that‬
‭even a dummy like me could use to inspect the encrypted HTTPS traffic.‬

‭TLDR‬
‭So to obtain the SSL master key from any program that uses openssl, all you have to do is to compile the code‬
‭at‬‭https://github.com/Lekensteyn/wireshark-notes/blob/master/src/sslkeylog.c‬‭and load the compiled library‬
‭via LD_PRELOAD. When the target application is executed, the loaded custom library will log the SSL master‬
‭key to whatever path defined in SSLKEYLOGFILE. With the master key, you can decrypt the relevant‬
‭captured TLS encrypted packets on wireshark.‬

‭However, what I found more interesting is the technique used, called Function Interposition. I was surprised‬
‭by how versatile this method can be for dynamically analyzing any Linux application. If you are interested in‬
‭writing your own code to fit your specific use case, keep reading.‬

‭Modus Operandi (How does it work)‬
‭The basic principle is simple. When the target binary is executed, a customized library is loaded that hooks‬
‭into the OpenSSL library. This is achieved by defining the environment variable LD_PRELOAD, which the‬
‭system uses to preload any specified shared libraries during program execution. This allows you to override‬
‭or extend any functions loaded by the running program.‬

‭To understand how the custom library searches for the target function, we can look at the code in‬
‭sslkeylog.c‬‭. The function‬‭try_lookup_symbol‬‭locates‬‭and returns the address of the specified function.‬
‭static‬‭inline‬‭void‬‭*‬‭try_lookup_symbol‬‭(‬‭const‬‭char‬‭*‬‭sym‬‭,‬‭int‬‭optional‬‭)‬

‭{‬

‭void‬‭*‬‭func‬‭=‬‭dlsym‬‭(RTLD_NEXT, sym);‬

‭// …SNIP…‬

‭return‬‭func;‬

‭}‬

‭In the function‬‭try_lookup_symbol‬‭, a call to‬‭dlsym‬‭is used to obtain the address of any function based on the‬
‭provided function name.‬‭dlsym‬‭is a function that retrieves‬‭the address of a symbol from any loaded dynamic‬
‭shared objects. The‬‭RTLD_NEXT‬‭flag allows the use‬‭of the real original definition of the function while‬
‭embedding only the necessary logic to implement the statistics gathering function.‬

30

Decrypting UNIX-based OpenSSL TLS Traffic
vikychoi

KNOWLEDGE SHARING

https://github.com/Lekensteyn/wireshark-notes/blob/master/src/sslkeylog.c

‭Once the address of the target function, such as‬‭SSL_SESSION_get_master_key‬‭,‬‭is found, the function can‬
‭be directly invoked.‬
‭static‬‭void‬‭copy_master_secret‬‭(‬‭const‬‭SSL_SESSION‬‭*‬‭session‬‭,‬

‭unsigned‬‭char‬‭*‬‭master_key_out‬‭,‬‭int‬‭*‬‭keylen_out‬‭)‬

‭{‬

‭#if‬‭OPENSSL_VERSION_NUMBER‬‭>=‬‭0x10100000L‬

‭static‬‭size_t‬‭(‬‭*‬‭func)();‬

‭if‬‭(‬‭!‬‭func) {‬

‭func‬‭=‬‭lookup_symbol‬‭(‬‭"SSL_SESSION_get_master_key"‬‭);‬

‭}‬

‭*‬‭keylen_out‬‭=‬‭func‬‭(session, master_key_out, SSL_MAX_MASTER_KEY_LENGTH);‬

‭// …SNIP…‬

‭}‬

‭Now we want to get the code to run at the right time. Since we can override symbols that are‬
‭dynamically linked in other shared libraries, we might want to override some commonly used‬
‭symbols in those shared libraries by defining functions with the same signatures in our‬
‭custom library. In our example, our goal is to get the master key, so it might be a good idea to‬
‭fetch the master key whenever there is a new SSL connection. This is exactly what the code‬
‭does, as shown below. Note that the function‬‭copy_master_secret‬‭is invoked in‬‭tap_ssl_key‬‭.‬

‭int‬‭SSL_connect‬‭(SSL‬‭*‬‭ssl‬‭)‬

‭{‬

‭static‬‭int‬‭(‬‭*‬‭func)();‬

‭if‬‭(‬‭!‬‭func) {‬

‭func‬‭=‬‭lookup_symbol‬‭(__func__);‬

‭}‬

‭SSL_TAP_STATE‬‭(state, ssl);‬

‭int‬‭ret‬‭=‬‭func‬‭(ssl);‬

‭tap_ssl_key‬‭(ssl,‬‭&‬‭state);‬

‭return‬‭ret;‬

‭}‬

‭Whenever‬‭SSL_connect‬‭is called by the target application,‬‭the definition in our‬‭LD_PRELOAD‬
‭library will be resolved instead, and it will call the function we wrote, achieving our goal.‬

‭Conclusion‬
‭By leveraging the technique of Function Interposition, it is able to dynamically analyze the Linux application‬
‭and inspect the encrypted HTTPS traffic without needing extensive reverse engineering skills. This also‬
‭provides valuable insights into the application's behavior. If you find yourself needing to analyze similar‬
‭applications, this straightforward approach could be a powerful tool in your toolkit.‬

31KNOWLEDGE SHARING

Neural Networks: Foundation

All neural networks are built and connected to-
gether using something called neurons. A single
neuron can take n inputs, and each input is mul-
tiplied by a weight value. Then, all the values
are summed together along with a bias value and
we pass the result through an activation function.
We can chain many of these neurons together to
form a neural network, but how do these neural
networks learn and output the results we want?

Neural Networks: Learning

Neural networks “learn” by trying to reduce the amount of errors of a given loss function
by updating the weight and bias values. In other words, the neural network tries to output
the results we want, and we use the loss function as a metric to determine how accurate the
model is. This is known as “Supervised Learning”.

Calculus (M1/M2) students should know that we can sometimes find a function’s local
minima or maxima using the first-derivative test, however this becomes infeasible when
dealing with more complicated functions.

A better method to find a function’s critical point while being computationally cheaper
would be using gradient descent. The idea is that we can just find the slope of a given
point on the function. If the slope is positive, we can shift the point a little bit to the left
by adjusting the weight and bias values, and vice versa for negative. After iterating
this process for a while, we should reach a local minima point, reducing the errors made by
our neural network. Most people describe this process as “pushing a ball down a hill”.

This process can be written as the following equation:

θ = θ − ϵ(∇J(θ))

Where θ represents the parameters of the neu-
ral network model (weights and biases), and we
take the first derivative of the loss function J to
obtain the gradient, then we multiply it with a
small value ϵ known as the learning rate, which
controls how much we move, and at last we sub-
tract it with our original parameters in order to
move downwards in the loss function. If we use
the function in the image as an illustration and it-
erate this process for a long time, we would reach
and oscillate around the yellow point.

Adversarial Attacks: What is it?

Adversarial attacks is an attack caused by manipulating data in a way such that the
adversarial data is indistinguishable from other untampered data by human observation,
yet it causes an AI model to misclassify the data. These attacks may cause the AI model to
malfunction and make wrong output, which could have disaterous consequences. One such
example would be tricking a self-driving car to suddenly accelerate while driving1.

1MIT Technology Review: Hackers can trick a Tesla into accelerating by 50 miles per hour

1

32

Introduction to Adversarial Attacks: Fast-Gradient Sign Method
Vow

KNOWLEDGE SHARING

https://www.technologyreview.com/2020/02/19/868188/hackers-can-trick-a-tesla-into-accelerating-by-50-miles-per-hour/

Adversarial Attacks: Fast Gradient Sign Method (FGSM)

One of the simplest and most famous adversarial attack method is called the Fast Gradi-
ent Sign Method[1]. To understand it, let’s recall how we update the parameters of a neural
network - we calculate the gradient of the loss function, then subtract the gradient from the
parameters to reduce the total error of the model. Now, what happens if we decide to add
the gradient to the parameters? In this case, we are causing the model to converge to a
local maxima, which means increasing the error of our model:

θ = θ + ϵ(∇J(θ))

But our goal here is not to create a poor model, but rather to create an input that
causes the model to perform poorly. To achieve this, we can add the gradient to the input
data x instead of the model parameters (remember, multiplication is commutative):

x = x+ ϵ(∇J(x))

At last, since the precision for most inputs is limited. For example, image pixels are often
represented only using 8 bits and will hence discard information below 1/255, therefore we
would need gradients that are large enough to cause the model to misclassify the input, but
also small enough so that is it not susceptible by human observation. To achieve this, one
method is to only take the sign of the gradients:

x = x+ ϵ · sign(∇J(x))

Now, if we iterate this process for a few rounds, we are now able to modify a normal
input to become an adversarial input.

Adversarial attacks: FGSM Demo

To demonstrate FGSM, we are going to
use it on an image classification model2.
which detects whether an image is AI gen-
erated or not.

The image classification model takes in
256x256 images, passes the data through
3 convolution layers with MaxPooling Lay-
ers, then the image gets flattened and goes
through a dense layer, and at last it goes
through another dense layer with Softmax
activation function, which gives 2 probabil-
ities, representing how likely the image is
generated by AI.

When we pass an AI-generated image through the model, the model predicted the image
is AI with 99.99% probability. However after 3 iterations of FGSM, the model now predicts
the image as not generated by AI with 99.98% probability. Yet, the difference between the
images before and after FGSM is hardly noticable just by looking, with the maximum pixel
value difference being 12 only. The demo code and data is located here3.

References

[1] I. J. Goodfellow, J. Shlens, and C. Szegedy, ”Explaining and Harnessing Adver-
sarial Examples.” arXiv, Mar. 20, 2015. doi: 10.48550/arXiv.1412.6572. Available:
http://arxiv.org/abs/1412.6572. [Accessed: Jun. 24, 2024]

2ArtifAI Detector: https://github.com/AustinBoyuJiang/ArtifAI
3FGSM Demo: https://github.com/Vyanide/FGSM-B6A-Demo

2

33KNOWLEDGE SHARING

https://github.com/AustinBoyuJiang/ArtifAI
https://github.com/Vyanide/FGSM-B6A-Demo
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572

‭I was in SINCON 2024 to promote the products of‬
‭my company. So I was like spending my first 3 days‬
‭on booth setup and staying around the booth.‬

‭What have I done?‬

‭I was given a section to give a talk on any topic. In‬
‭the end, I tried to explain to the audience how to‬
‭use NIST Cybersecurity Framework (CSF) and‬
‭Cyber Defense Matrix (CDM) to check if there are‬
‭any missing plates for the defense mechanism.‬
‭Although the content is about ransomware and‬
‭data leak detection in darkweb, some audience‬
‭foundmy talk interesting when CDM is infused in‬
‭my slides.‬

‭When I had some spare time not at my booth, I‬
‭tried to attend the following workshops:‬

‭●‬ ‭Toyota Motor Corporation x Car Security‬
‭Quarter (CSQ) — Automotive Security 101‬

‭●‬ ‭Introduction to Software Defined Radio‬
‭(SDR) Workshop‬

‭Car Hacking‬

‭At the beginning of the session, we were askedto‬
‭install‬‭can-utils‬‭on our VM.‬‭RAMN and CAN Bus.‬

‭As the workshop only has 15‬‭RAMN‬‭(Resistant‬
‭Automotive Miniature Network) prepared and the‬
‭workshop was too popular, we had to team up to‬
‭try playing with it. I was lucky and my teammate‬
‭let me do all the hands-on parts. Either their‬
‭environment is not functioning, or they find it‬
‭more fun to look at others playing with the‬
‭commands.‬

‭Image of RAMN and its architecture‬

‭How communication works in a modern vehicle‬
‭Source: A classification of attacks to In-Vehicle Components‬

‭Car systems nowadays make use of many‬
‭communication systems that work like neural‬
‭networks. The main aim of our workshop is to‬
‭hijack the CAN bus so that the components (e.g.‬
‭accelerator, brake, turn signals) work in the way‬
‭the attacker wishes to.‬

‭Of course, there are other communication‬
‭protocols. We are targeting the CAN bus this time.‬

‭Packet Sniffing‬

‭cansniffer‬‭is used to track down the data and see‬
‭the data received from RAMN. Items highlighted in‬
‭red represent an update of value. Note that‬
‭cansniffer‬‭keeps on updating the console. It is‬
‭impossible for users to track the historical record.‬

‭candump‬‭was used to track the data of CAN Bus. By‬
‭using the value and mask pair, we can trim the data‬
‭and have every instance printed line by line on the‬
‭console.‬

34

SINCON 2024 Recollections
GonJK

EVENTS

https://ramn.readthedocs.io/en/latest/general.html

‭Injection‬

‭We capture a handbrake signal as follows:‬

‭(1716453526.483563) can0 1D3 [8] 01 00 8A 75 4A C9 87‬

‭35‬‭We attempt to send it back using‬‭canbus‬‭, trying‬‭to‬
‭pretend as a normal input or even an interception‬

‭cansend can0 1d3#01008A754AC98735‬‭Result:‬
‭RAMN recognised the handbrake signal and‬
‭actually braked the car.‬

‭It is also possible to use‬‭camplayer‬‭to replay a‬
‭signal capture without knowing which ID‬
‭represents the exact component action (just‬
‭packet-by-packet.)‬

‭Capture:‬‭candump can0 -f ./can0.log‬
‭Replay:‬‭can player -I ./can0.log -l i can0=can0‬

‭I tried to play with all buttons while capturing the‬
‭sequences but I forgot to take a video. In short, you‬
‭may see that the headlight turns on itself by‬
‭replaying the whole sequence captured from‬
‭candump‬‭.‬

‭Demo and CAN Log‬
‭If you want to see the video demo and my CAN bus‬
‭capture, please PM me, and I will share it with you.‬

‭SDR‬

‭The SDR workshop mainly covered the following:‬

‭●‬ ‭Wave theory‬
‭●‬ ‭Modulation / Demodulation‬
‭●‬ ‭GNU Radio hands-on‬

‭While we were learning the theories, we had to‬
‭install‬‭gnuradio‬‭at the same time. Speakers also‬
‭suggested using OS‬‭PENTOO‬‭with boot USB. This‬
‭allows the hardware to communicate directly and‬
‭facilitates the use of HackRF One.‬

‭An IQ file (I/Q data) was provided in the workshop‬

‭and we were asked to demodulate it in order to‬
‭hear the FM broadcast recorded. The IQ files work‬
‭as a ”raw” file of the signal. Within‬‭gnuradio‬‭, we‬
‭are able to create “flowgraphs”, which tells‬
‭gnuradio‬‭how to process data into a desired‬
‭format. Once it is completed, it should look like‬
‭this:‬

‭You may find it similar to an FM receiver.‬

‭Extra‬

‭I won the lucky draw from Offensive Security,‬
‭which is a box of Lego…‬

35EVENTS

https://pentoo.org/

‭Credits and Afterwords‬

‭●‬ ‭Editor-in-chief:‬‭GonJK‬

‭●‬ ‭Article contributors:‬
‭a1668k‬ ‭apple‬ ‭botton‬ ‭Eason‬
‭ensy‬ ‭gldanoob‬ ‭GonJK‬ ‭grhkm‬
‭harrier‬ ‭hoifanrd‬ ‭Mystiz‬ ‭Ozetta‬
‭vikychoi‬ ‭Vow‬

‭●‬ ‭Design:‬‭apple‬

‭●‬ ‭Cover art:‬‭GonJK‬

‭●‬ ‭Article review (Knowledge-wise):‬
‭apple‬ ‭cire meat pop‬ ‭grhkm‬ ‭Ozetta‬

‭If‬‭you‬‭have‬‭any‬‭comments‬‭on‬‭the‬‭newsletter,‬‭please‬‭don’t‬‭hesitate‬‭to‬‭drop‬‭a‬‭direct‬‭message‬
‭through‬ ‭Facebook,‬ ‭X‬ ‭(Formerly‬ ‭known‬ ‭as‬ ‭Twitter),‬‭E-mail,‬‭or‬‭even‬‭Discord‬‭–‬‭let‬‭us‬‭know‬
‭what’s on your mind!‬

‭As‬‭you‬‭dive‬‭into‬‭the‬‭articles,‬‭I‬‭hope‬‭you‬‭feel‬‭the‬‭passion‬‭and‬‭dedication‬‭that‬‭went‬‭into‬‭each‬
‭piece.‬ ‭Thank‬ ‭you‬ ‭once‬ ‭again‬ ‭to‬ ‭our‬ ‭incredible‬ ‭writers‬ ‭and‬ ‭reviewers.‬ ‭Your‬ ‭contributions‬
‭are deeply valued, and hope you enjoyed these articles.‬

‭Connect Us‬

‭blackb6a‬ ‭blackb6a‬ ‭team@b6a.black‬ ‭blackb6a‬

36

	Table of Contents
	Foreword
	Ad-Hoc
	Puzzle
	Isekai Tensei Hakka Vol 1 Issue 3
	Isekai Tensei Hakka Vol 1 Issue 4

	Knowledge Sharing
	How to hack a signage using a $9 remote
	AI “Artist” (1): Text-to-image
	AI “Artist” (2): Prompts & Inpainting
	APT techniques studying
	Introduction to Coppersmith's Method (simply)
	Analysis of Web Applications From a Noob's Perspective
	手把手解 Heap pwn: Tcache Poisoning
	A Primer on Searching for High Rank Elliptic Curves
	IDA Tips 1: Custom Structures
	Technical Minecraft - Chunk Loading I
	Decrypting UNIX-based OpenSSL TLS Traffic
	Introduction to Adversarial Attacks: Fast-Gradient Sign Method

	Events
	SINCON 2024 Recollections

	Credits and Afterwords

